1
|
Pham TTQ, Kuo YC, Chang WL, Weng HJ, Huang YH. Double-sided niche regulation in skin stem cell and cancer: mechanisms and clinical applications. Mol Cancer 2025; 24:147. [PMID: 40399946 PMCID: PMC12093937 DOI: 10.1186/s12943-025-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 05/23/2025] Open
Abstract
The niche microenvironment plays a crucial role in regulating the fate of normal skin stem cells (SSCs) and cancer stem cells (CSCs). Therapeutically targeting the CSC niche holds promise as an effective strategy; however, the dual effects of shared SSC niche signaling in CSCs have contributed to the aggressive characteristics of tumors and poor survival rates in skin cancer patients. The lack of a clear underlying mechanism has significantly hindered drug development for effective treatment. This article explores recent advances in understanding how niche factors regulate cell fate determination between skin stem cells and skin CSCs, along with their clinical implications. The dual roles of key components of the adhesive niche, including the dermo-epidermal junction and adherens junction, various cell types-especially immune cells and fibroblasts-as well as major signaling pathways such as Sonic hedgehog (Shh), Wingless-related integration site (Wnt)/β-catenin, YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), and Notch, are highlighted. Additionally, recent advances in clinical trials and drug development targeting these pathways are discussed. Overall, this review provides valuable insights into the complex interactions between skin cancer stem cells and their microenvironment, laying the groundwork for future research and clinical strategies.
Collapse
Affiliation(s)
- Trang Thao Quoc Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Wei-Ling Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hao-Jui Weng
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Markota Cagalj A, Glibo M, Karin-Kujundzic V, Serman A, Vranic S, Serman L, Skara Abramovic L, Bukvic Mokos Z. Hedgehog signalling pathway inhibitors in the treatment of basal cell carcinoma: an updated review. J Drug Target 2025:1-21. [PMID: 40262619 DOI: 10.1080/1061186x.2025.2496470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
Basal cell carcinoma (BCC) is the most common type of skin cancer that usually appears in sun-exposed body regions such as the head, trunk, and extremities. There are four main clinicopathological subtypes of BCC: nodular, superficial, morpheaform, and fibroepithelial. BCC's molecular basis includes inherited genetic susceptibility and somatic mutations, often induced by exposure to UV radiation. The aberrant activation of the hedgehog (Hh) signalling pathway, caused by mutations in the Hh components, plays a central role in the molecular pathogenesis of this carcinoma. This led to the development of Hh signalling pathway inhibitors as a new treatment option for patients with advanced disease. In this review, we summarise BCC's clinical presentation and histopathology and present knowledge on the most studied Hh signalling inhibitors, vismodegib and sonidegib, and other inhibitors of this signalling, such as itraconazole, patidegib, taladegib, and arsenic trioxide, in the treatment of BCC. We also present the most common Hh signalling inhibitor adverse events and their management options, which could improve patients' quality of life during treatment.
Collapse
Affiliation(s)
- Adela Markota Cagalj
- Department of Dermatology and Venereology, University Hospital Centre Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Mislav Glibo
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinic of Obstetrics and Gynecology, Clinical Hospital 'Sveti Duh', Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Zrinka Bukvic Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Dermatology and Venereology, University Hospital Centre Zagreb, Zagreb, Croatia
| |
Collapse
|
3
|
Ortega-Carballo KJ, Gil-Becerril KM, Acosta-Virgen KB, Perez-Hernandez AM, Muriel P, Rosales-Encina JL, Tsutsumi V. Characterization of a model of liver regeneration: Role of hedgehog signaling in experimental hepatic amoebiasis. Pathol Res Pract 2024; 260:155452. [PMID: 38972165 DOI: 10.1016/j.prp.2024.155452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
The development of amoebic liver abscess (ALA) leads to liver necrosis, accompanied by an exacerbated inflammatory response and the formation of multiple granulomas. Adequate management of the infection through the administration of treatment and the timely response of the organ to the damage allows the injury to heal with optimal regeneration without leaving scar tissue, which does not occur in other types of damage such as viral hepatitis that may conducts to fibrosis or cirrhosis. The Hedgehog signaling pathway (Hh) is crucial in the embryonic stage, while in adults it is usually reactivated in response to acute or chronic injuries, regeneration, and wound healing. In this work, we characterized Hh in experimental hepatic amoebiasis model, with the administration of treatment with metronidazole, as well as a pathway inhibitor (cyclopamine), through histological and immunohistochemical analyses including an ultrastructure analysis through transmission electron microscopy. The results showed an increase in the percentage of lesions obtained, a decrease in the presence of newly formed hepatocytes, a generalized inflammatory response, irregular distribution of type I collagen accompanied by the presence of fibroblast-type cells and a decrease in effector cells of this pathway. These results constitute the first evidence of the association of the activation of Hh with the liver regeneration process in experimental amebiasis.
Collapse
Affiliation(s)
- Karla Jocelyn Ortega-Carballo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Karla Montserrat Gil-Becerril
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Karla Berenice Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Alan Michael Perez-Hernandez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Pablo Muriel
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico.
| |
Collapse
|
4
|
Zambrano‐Román M, Padilla‐Gutiérrez JR, Valle Y, Muñoz‐Valle JF, Guevara‐Gutiérrez E, Martínez‐Fernández DE, Valdés‐Alvarado E. PTCH1 gene variants rs357564, rs2236405, rs2297086 and rs41313327, mRNA and tissue expression in basal cell carcinoma patients from Western Mexico. J Clin Lab Anal 2024; 38:e25010. [PMID: 38287479 PMCID: PMC10873687 DOI: 10.1002/jcla.25010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Basal cell carcinoma (BCC) represents about 80% of all cases of skin cancer. The PTCH1 is a transmembrane protein of the Sonic Hedgehog signaling pathway that regulates cell proliferation. Genetic variants in PTCH1 gene have been previously described in association with BCC development. In addition, PTCH1 mRNA and protein expression analysis are also significant to understand its role in skin cancer physiopathology. METHODS An analytical cross-sectional study was performed, and a total of 250 BCC patients and 290 subjects from the control group (CG) were included, all born in western Mexico. The genotypes and relative expression of the mRNA were determined by TaqMan® assay. The protein expression was investigated in 70 BCC paraffin-embedded samples with PTCH1 antibodies. Semi-quantitative analysis was performed to determine the expression level in the immunostained cells. RESULTS We did not find evidence of an association between PTCH1 rs357564, rs2297086, rs2236405, and rs41313327 genetic variants and susceptibility to BCC. Likewise, no statistically significant differences were found in the comparison of the mRNA level expression between BCC and CG (p > 0.05). The PTCH1 protein showed a low expression in 6 of the analyzed samples and moderate expression in 1 sample. No association was found between genetic variants, protein expression, and demographic-clinical characteristics (p > 0.05). CONCLUSION The studied PTCH1 variants may not be associated with BCC development in the Western Mexico population. The PTCH1 mRNA levels were lower in patients with BCC compared to the control group, but its protein was underexpressed in the tissue samples.
Collapse
Affiliation(s)
- Marianela Zambrano‐Román
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y GenómicaUniversidad de GuadalajaraGuadalajaraMexico
| | - Jorge R. Padilla‐Gutiérrez
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - José F. Muñoz‐Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Elizabeth Guevara‐Gutiérrez
- Departamento de Dermatología, Instituto Dermatológico de Jalisco “Dr. José Barba Rubio”Secretaría de Salud JaliscoZapopanJaliscoMexico
| | - Diana Emilia Martínez‐Fernández
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| | - Emmanuel Valdés‐Alvarado
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas (IICB)Universidad de GuadalajaraGuadalajaraMexico
| |
Collapse
|
5
|
Conte S, Ghezelbash S, Nallanathan B, Lefrançois P. Clinical and Molecular Features of Morpheaform Basal Cell Carcinoma: A Systematic Review. Curr Oncol 2023; 30:9906-9928. [PMID: 37999140 PMCID: PMC10670319 DOI: 10.3390/curroncol30110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer, with a lifetime risk currently approaching up to 40% in Caucasians. Among these, some clinical and pathological BCC variants pose a higher risk due to their more aggressive biological behavior. Morpheaform BCC (morBCC), also known as sclerosing, fibrosing, or morpheic BCC, represents up to 5-10% of all BCC. Overall, morBCC carries a poorer prognosis due to late presentation, local tissue destruction, tumor recurrence, and higher frequency of metastasis. In this systematic review, we review the epidemiological, clinical, morphological, dermatoscopical, and molecular features of morBCC. After the title and abstract screening of 222 studies and the full-text review of 84 studies, a total of 54 studies met the inclusion criteria and were thus included in this review.
Collapse
Affiliation(s)
- Santina Conte
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada;
| | - Sarah Ghezelbash
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada; (S.G.); (B.N.)
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Bonika Nallanathan
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada; (S.G.); (B.N.)
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Philippe Lefrançois
- Cancer Axis, Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada; (S.G.); (B.N.)
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Division of Dermatology, Department of Medicine, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
6
|
Menge TD, Durgin JS, Hrycaj SM, Brent AA, Patel RM, Harms PW, Fullen DR, Chan MP, Bresler SC. Utility of GLI1 RNA Chromogenic in Situ Hybridization in Distinguishing Basal Cell Carcinoma From Histopathologic Mimics. Mod Pathol 2023; 36:100265. [PMID: 37391171 DOI: 10.1016/j.modpat.2023.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Basal cell carcinoma (BCC) is the most common human malignancy and is a leading cause of nonmelanoma skin cancer-related morbidity. BCC has several histologic mimics which may have treatment and prognostic implications. Furthermore, BCC may show alternative differentiation toward a variety of cutaneous structures. The vast majority of BCCs harbor mutations in the hedgehog signaling pathway, resulting in increased expression of the GLI family of transcription factors. GLI1 immunohistochemistry has been shown to discriminate between several tumor types but demonstrates high background signal and lack of specificity. In this study, we evaluated the utility of GLI1 RNA chromogenic in situ hybridization (CISH) as a novel method of distinguishing between BCC and other epithelial neoplasms. Expression of GLI1 by RNA CISH was retrospectively evaluated in a total of 220 cases, including 60 BCCs, 37 squamous cell carcinomas (SCCs) including conventional, basaloid, and human papillomavirus infection (HPV)-associated tumors, 16 sebaceous neoplasms, 10 Merkel cell carcinomas, 58 benign follicular tumors, and 39 ductal tumors. The threshold for positivity was determined to be greater than or equal to 3 GLI1 signals in at least 50% of tumor cells. Positive GLI1 expression was identified in 57/60 BCCs, including metastatic BCC, collision lesions with SCC, and BCCs with squamous, ductal, or clear cell differentiation or with other unusual features compared to 1/37 SCCs, 0/11 sebaceous carcinomas, 0/5 sebaceomas, 1/10 Merkel cell carcinomas, 0/39 ductal tumors, and 28/58 follicular tumors. With careful evaluation, GLI1 RNA CISH is highly sensitive (95%) and specific (98%) in distinguishing between BCC and nonfollicular epithelial neoplasms. However, GLI1 CISH is not specific for distinguishing BCC from most benign follicular tumors. Overall, detection of GLI1 RNA by CISH may be a useful tool for precise classification of histologically challenging basaloid tumors, particularly in the setting of small biopsy specimens, metaplastic differentiation, or metastatic disease.
Collapse
Affiliation(s)
- Tyler D Menge
- CTA Pathology, Ann Arbor, Michigan; Department of Dermatology, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Joseph S Durgin
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven M Hrycaj
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ashley A Brent
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Cutaneous Pathology, WCP Laboratories Inc, Maryland Heights, Missouri
| | - Paul W Harms
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - May P Chan
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Scott C Bresler
- Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan; Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
7
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Blitsman Y, Benafsha C, Yarza N, Zorea J, Goldbart R, Traitel T, Elkabets M, Kost J. Cargo-Dependent Targeted Cellular Uptake Using Quaternized Starch as a Carrier. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1988. [PMID: 37446506 DOI: 10.3390/nano13131988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for diverse therapeutic agents. We investigate the ability of Q-starch/cargo complexes to target different organelles within the cellular landscape, based on the specific activation sites of therapeutic agents. Plasmid DNA (pDNA), small interfering RNA (siRNA), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) were chosen as representative therapeutic molecules, acting in the nucleus, cytoplasm, and membrane, respectively. By carrying out comprehensive characterizations, employing dynamic light scattering (DLS), determining the zeta potential, and using cryo-transmitting electron microscopy (cryo-TEM), we reveal the formation of nano-sized, positively charged, and spherical Q-starch complexes. Our results demonstrate that these complexes exhibit efficient cellular uptake, targeting their intended organelles while preserving their physical integrity and functionality. Notably, the intracellular path of the Q-starch/cargo complex is guided by the cargo itself, aligning with its unique biological activity site. This study elucidates the versatility and potency of Q-starch as a versatile drug delivery carrier, paving the way for novel applications offering targeted delivery strategies for potential therapeutic molecules.
Collapse
Affiliation(s)
- Yossi Blitsman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nir Yarza
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
9
|
Bang S, Son H, Cha H, Song K, Park H, Kim H, Ko JY, Myung J, Paik S. Immunohistochemical Analysis of Single-Stranded DNA Binding Protein 2 in Non-Melanoma Skin Cancers. Biomedicines 2023; 11:1818. [PMID: 37509458 PMCID: PMC10376428 DOI: 10.3390/biomedicines11071818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Single-stranded DNA binding protein 2 (SSBP2) is a tumor suppressor candidate. In this study, the expression level and clinicopathological significance of SSBP2 in squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) were evaluated. We also identified biological pathways associated with a set of genes potentially related to SSBP2. Immunohistochemistry (IHC) was performed on 70 SCC and 146 BCC cases to assess SSBP2 expression semi-quantitatively. In addition, the associations between SSBP2 expression and clinicopathological characteristics were analyzed. Gene ontology (GO) enrichment analysis was performed using publicly available data and web-based bioinformatics tools. Compared with BCC, SCC had a significantly low SSBP2 expression (p < 0.001). In total, 12 (17.1%) of the 70 SCC cases and 30 (20.5%) of the 146 BCC cases showed low SSBP2 expression. Among SCC cases, ulceration (p = 0.005) and a deep level of invasion (p = 0.012) showed an association with low SSBP2 expression. Local recurrence was slightly more common in the SCC subgroup with low SSBP2 expression, although the difference was not significant (p = 0.058). Using GO enrichment analysis, we identified several biological functions performed by a set of 36 genes in SCC. SSBP2 evaluation using IHC can be helpful in the differential diagnosis of SCC and BCC. SSBP2 expression was associated with tumor invasiveness in SCC.
Collapse
Affiliation(s)
- Seongsik Bang
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hwangkyu Son
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyebin Cha
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kihyuk Song
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hosub Park
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Joo Yeon Ko
- Department of Dermatology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Jaekyung Myung
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Seungsam Paik
- Department of Pathology, Seoul Hospital, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
10
|
Dunatov Huljev A, Kelam N, Benzon B, Šoljić V, Filipović N, Pešutić Pisac V, Glavina Durdov M, Vukojević K. Expression Pattern of Sonic Hedgehog, Patched and Smoothened in Clear Cell Renal Carcinoma. Int J Mol Sci 2023; 24:ijms24108935. [PMID: 37240278 DOI: 10.3390/ijms24108935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the deadliest neoplasm of the urinary tract, and we are still far from completely understanding ccRCC development and treatment. The renal tissue paraffin blocks (20) of patients with ccRCC were collected at the University Hospital in Split from 2019 to 2020, and tissue sections were stained with patched (PTCH), anti-smoothened (SMO) and anti-Sonic Hedgehog (SHH) antibodies. SHH was highly expressed (31.9%) in grade 1 tumour, it being higher than all other grades and the control (p < 0.001-p < 0.0001). The trend of a linear decrease in the expression of SHH was observed with the progression of the tumour grade (p < 0.0001). PTCH expression was significantly lower in grades 1 and 2 in comparison to the control (p < 0.01) and grade 4 (p < 0.0001). A significant increase in the expression of SMO was found in grade 4 compared to all other grades (p < 0.0001) and the control (p < 0.001). The strong expression of SHH was observed in carcinoma cells of the G1 stage with a diffuse staining pattern (>50% of neoplastic cells). Stroma and/or inflammatory infiltrate display no staining and no expression of SHH in G1 and G2, while mild focal staining (10-50% of neoplastic cells) was observed in G3 and G4. Patients with high PTCH and low SMO expression had significant time survival differences (p = 0.0005 and p = 0.029, respectively). Therefore, high levels of PTCH and low levels of SMO expression are important markers of better survival rates in ccRCC patients.
Collapse
Affiliation(s)
- Ana Dunatov Huljev
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
| | - Violeta Šoljić
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Valdi Pešutić Pisac
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Faculty of Health Studies, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
11
|
Di Bartolomeo L, Vaccaro F, Irrera N, Borgia F, Li Pomi F, Squadrito F, Vaccaro M. Wnt Signaling Pathways: From Inflammation to Non-Melanoma Skin Cancers. Int J Mol Sci 2023; 24:ijms24021575. [PMID: 36675086 PMCID: PMC9867176 DOI: 10.3390/ijms24021575] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Canonical and non-canonical Wnt signaling pathways are involved in cell differentiation and homeostasis, but also in tumorigenesis. In fact, an exaggerated activation of Wnt signaling may promote tumor growth and invasion. We summarize the most intriguing evidence about the role of Wnt signaling in cutaneous carcinogenesis, in particular in the pathogenesis of non-melanoma skin cancer (NMSC). Wnt signaling is involved in several ways in the development of skin tumors: it may modulate the inflammatory tumor microenvironment, synergize with Sonic Hedgehog pathway in the onset of basal cell carcinoma, and contribute to the progression from precancerous to malignant lesions and promote the epithelial-mesenchymal transition in squamous cell carcinoma. Targeting Wnt pathways may represent an additional efficient approach in the management of patients with NMSC.
Collapse
Affiliation(s)
- Luca Di Bartolomeo
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federico Vaccaro
- Department of Dermatology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Messina, 98125 Messina, Italy
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| |
Collapse
|
12
|
Interaction of Arsenic Exposure and Transcriptomic Profile in Basal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225598. [PMID: 36428691 PMCID: PMC9688807 DOI: 10.3390/cancers14225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to inorganic arsenic (As) is recognized as risk factor for basal cell carcinoma (BCC). We have followed-up 7000 adults for 6 years who were exposed to As and had manifest As skin toxicity. Of them, 1.7% developed BCC (males = 2.2%, females = 1.3%). In this study, we compared transcriptome-wide RNA sequencing data from the very first 26 BCC cases and healthy skin tissue from independent 16 individuals. Genes in “ cell carcinoma pathway”, “Hedgehog signaling pathway”, and “Notch signaling pathway” were overexpressed in BCC, confirming the findings from earlier studies in BCC in other populations known to be exposed to As. However, we found that the overexpression of these known pathways was less pronounced in patients with high As exposure (urinary As creatinine ratio (UACR) > 192 µg/gm creatinine) than patients with low UACR. We also found that high UACR was associated with impaired DNA replication pathway, cellular response to different DNA damage repair mechanisms, and immune response. Transcriptomic data were not strongly suggestive of great potential for immune checkpoint inhibitors; however, it suggested lower chance of platinum drug resistance in BCC patients with high UACR compared high platinum drug resistance potential in patients with lower UACR.
Collapse
|
13
|
Deng LJ, Jia M, Luo SY, Li FZ, Fang S. Expression of Hedgehog Signaling Pathway Proteins in Basal Cell Carcinoma: Clinicopathologic Study. Clin Cosmet Investig Dermatol 2022; 15:2353-2361. [PMCID: PMC9637365 DOI: 10.2147/ccid.s389551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Li-Jia Deng
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Meng Jia
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Si-Yu Luo
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng-Zeng Li
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Sheng Fang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Sheng Fang, Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuzhong District, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
14
|
Lee SH, Lee JS, Park JH, Yoon S, Lee KY, Kim HS. Glycolytic Metabolic Remodeling by the Truncate of Glioma-Associated Oncogene Homolog 1 in Triple-Negative Breast Cancer Cells. J Cancer 2022; 13:3031-3043. [PMID: 36046646 PMCID: PMC9414023 DOI: 10.7150/jca.72793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Hedgehog (Hh) signaling pathway plays an essential role in embryonic development, tissue regeneration, and stem cell renewal. In particular, terminal effectors of the Hh signaling pathway are associated with the regulation of glioma-associated oncogene homolog 1 (GLI1) transcription factors. Overexpression of GLI1 is closely associated with poor prognosis in breast cancer. The Hh-GLI1 signaling pathway is activated and participates in the tumorigenesis and progression of breast cancer, especially in the aggressive subtype of triple-negative breast cancer (TNBC). However, the role of GLI1 in regulating TNBC metabolism remains unclear. This study aimed to explore the functional role of GLI1 in glycolytic metabolism in TNBC. Immunohistochemical analysis of GLI1 expression in a tissue microarray revealed significant correlations between GLI1 expression and advanced tumor stage and grade. GLI1 expression levels were drastically increased in MDA-MB-231 cells compared to those in other cell lines. Inhibition of GLI1 expression using GLI1 small interfering RNA (siRNA) in MDA-MB-231 cells resulted in a significant reduction in cell proliferation and induced cell cycle arrest at the G1 phase. Furthermore, GLI1 downregulation significantly reduced the expression of glycolysis-regulated proteins. GLI1 knockdown resulted in reduced glycolytic rates and extracellular lactate levels. Moreover, metabolic stress after GLI1 knockdown activated the energy sensor, adenosine monophosphate-activated protein kinase, which subsequently resulted in autophagy induction. In conclusion, this study indicates that targeting GLI1 reprograms the tumor glucose metabolism to suppress breast cancer cell growth and proliferation.
Collapse
Affiliation(s)
- Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Ji Sun Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| |
Collapse
|
15
|
Moisejenko-Goluboviča J, Groma V, Svirskis Š, Ivanova A. Serum Vitamin D Levels Explored in the Latvian Cohort of Patients with Basal Cell Carcinoma Linked to the Sonic Hedgehog and Vitamin D Binding Protein Cutaneous Tissue Indices. Nutrients 2022; 14:nu14163359. [PMID: 36014865 PMCID: PMC9413259 DOI: 10.3390/nu14163359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet radiation is known as one of the major contributors to skin malignancies, including basal cell carcinoma (BCC), which is the most common type of skin cancer. It is a heterogeneous tumor, which presents with various types that are stratified into low- and high-risk tumors. Sunlight is important for overall health and vitamin D synthesis in the skin, whereas deviations from the optimal level of vitamin D are shown to be associated with the risk of the development of BCC. The accumulating evidence suggests the ability of vitamin D to antagonize the Sonic Hedgehog (SHH) signaling, the key tumor pathway, and play a protective role in the development of BCC. Additionally, a vitamin D binding protein (DBP) is shown to be implicated in the complex regulation of vitamin D. Here, we aimed to explore serum vitamin D in patients with different primary and recurrent BCC of the head and neck and investigate cutaneous DBP and SHH indices, confirmed immunohistochemically in these subjects. According to the results, 94.9% of the Latvian cohort of BCC patients were found to be deficient in vitamin D. No significant differences in serum vitamin D levels were found between genders, primary and recurrent tumors, and different types of BCC. Serum vitamin D was inversely associated with tumor size. Susceptible male individuals with low blood vitamin D levels were recognized at risk of developing aggressive and recurrent BCC confirmed by the use of hierarchical clustering analysis. In smaller tumors with a favorable course, such as superficial and nodular BCC, the association between high DBP and low SHH tissue expression was found, providing supportive evidence of the existence of a link between vitamin D, proteins involved in its metabolism, as exemplified by the DBP and SHH signaling pathway. The assumption of a deficiency in the protective effect of vitamin D in patients with high-risk BCCs was proposed in low DBP and high SHH tissue indices. New extensions to existing knowledge and characterization of the BCC signaling pathways and their cross-talk with vitamin D are warranted when searching for a preferential effect of vitamin D on skin cancer.
Collapse
Affiliation(s)
- Jeļena Moisejenko-Goluboviča
- Department of Doctoral Studies, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia
- Correspondence: ; Tel.: +371-26048005
| | - Valērija Groma
- Institute of Anatomy and Anthropology, Riga Stradins University, 9 Kronvalda Blvd., LV-1010 Riga, Latvia
| | - Šimons Svirskis
- Institute of Microbiology and Virology, Riga Stradins University, Rātsupītes Str. 5, LV-1067 Riga, Latvia
| | - Anna Ivanova
- Department of Maxillofacial Surgery, Institute of Stomatology, Riga Stradins University, Dzirciema Street 20, LV-1007 Riga, Latvia
| |
Collapse
|
16
|
Rowbotham SP, Goruganthu MUL, Arasada RR, Wang WZ, Carbone DP, Kim CF. Lung Cancer Stem Cells and Their Clinical Implications. Cold Spring Harb Perspect Med 2022; 12:a041270. [PMID: 34580078 PMCID: PMC9121890 DOI: 10.1101/cshperspect.a041270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is now widely accepted that stem cells exist in various cancers, including lung cancer, which are referred to as cancer stem cells (CSCs). CSCs are defined in this context as the subset of tumor cells with the ability to form tumors in serial transplantation and cloning assays and form tumors at metastatic sites. Mouse models of lung cancer have shown that lung CSCs reside in niches that are essential for the maintenance of stemness, plasticity, enable antitumor immune evasion, and provide metastatic potential. Similar to normal lung stem cells, Notch, Wnt, and the Hedgehog signaling cascades have been recruited by the CSCs to regulate stemness and also provide therapy-driven resistance in lung cancer. Compounds targeting β-catenin and Sonic hedgehog (Shh) activity have shown promising anti-CSC activity in preclinical murine models of lung cancer. Understanding CSCs and their niches in lung cancer can answer fundamental questions pertaining to tumor maintenance and associated immune regulation and escape that appear important in the quest to develop novel lung cancer therapies and enhance sensitivity to currently approved chemo-, targeted-, and immune therapeutics.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mounika U L Goruganthu
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Rajeswara R Arasada
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | - Walter Z Wang
- James Thoracic Oncology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - David P Carbone
- James Thoracic Oncology Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
17
|
Yang L, Wang J, Gong X, Fan Q, Yang X, Cui Y, Gao X, Li L, Sun X, Li Y, Wang Y. Emerging Roles for LGR4 in Organ Development, Energy Metabolism and Carcinogenesis. Front Genet 2022; 12:728827. [PMID: 35140734 PMCID: PMC8819683 DOI: 10.3389/fgene.2021.728827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
The leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) belonging to G protein-coupled receptors (GPCRs) family, had various regulatory roles at multiple cellular types and numerous targeting sites, and aberrant LGR4 signaling played crucial roles in diseases and carcinogenesis. On the basis of these facts, LGR4 may become an appealing therapeutic target for the treatment of diseases and tumors. However, a comprehensive investigation of its functions and applications was still lacking. Hence, this paper provided an overview of the molecular characteristics and signaling mechanisms of LGR4, its involvement in multiple organ development and participation in the modulation of immunology related diseases, metabolic diseases, and oxidative stress damage along with cancer progression. Given that GPCRs accounted for almost a third of current clinical drug targets, the in-depth understanding of the sophisticated connections of LGR4 and its ligands would not only enrich their regulatory networks, but also shed new light on designing novel molecular targeted drugs and small molecule blockers for revolutionizing the treatment of various diseases and tumors.
Collapse
Affiliation(s)
- Linlin Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaodi Gong
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yunxia Cui
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiaoyan Gao
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Lijuan Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- *Correspondence: Yuhong Li, ; Yudong Wang,
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- *Correspondence: Yuhong Li, ; Yudong Wang,
| |
Collapse
|
18
|
Jain R, Dubey SK, Singhvi G. The Hedgehog pathway and its inhibitors: Emerging therapeutic approaches for basal cell carcinoma. Drug Discov Today 2021; 27:1176-1183. [PMID: 34896624 DOI: 10.1016/j.drudis.2021.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Basal cell carcinoma (BCC) is the most common non-melanoma skin cancer (NMSC). Although surgery is the first-line treatment, BCC can lead in some cases, to a metastatic or advanced form, requiring targeted combination therapies. The Hedgehog (Hh) signalling pathway is the major pathway associated with the formation of basal carcinoma tumorigenesis, thus, targeting this is a promising therapeutic approach. Some Hh inhibitors have been approved by the US Food and Drug Administration (FDA), such as vismodegib and sonidegib. However, both of these showed limited effectiveness against resistant tumors. Therefore, an essential understanding of the mechanisms involved in the Hh signaling pathway is necessary to improve tumor inhibition.
Collapse
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | | | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| |
Collapse
|
19
|
Wu Z, Hai E, Di Z, Ma R, Shang F, Wang Y, Wang M, Liang L, Rong Y, Pan J, Wu W, Su R, Wang Z, Wang R, Zhang Y, Li J. Using WGCNA (weighted gene co-expression network analysis) to identify the hub genes of skin hair follicle development in fetus stage of Inner Mongolia cashmere goat. PLoS One 2020; 15:e0243507. [PMID: 33351808 PMCID: PMC7755285 DOI: 10.1371/journal.pone.0243507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Mature hair follicles represent an important stage of hair follicle development, which determines the stability of hair follicle structure and its ability to enter the hair cycle. Here, we used weighted gene co-expression network analysis (WGCNA) to identify hub genes of mature skin and hair follicles in Inner Mongolian cashmere goats. METHODS We used transcriptome sequencing data for the skin of Inner Mongolian cashmere goats from fetal days 45-135 days, and divided the co expressed genes into different modules by WGCNA. Characteristic values were used to screen out modules that were highly expressed in mature skin follicles. Module hub genes were then selected based on the correlation coefficients between the gene and module eigenvalue, gene connectivity, and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The results were confirmed by quantitative polymerase chain reaction (qPCR). RESULTS Ten modules were successfully defined, of which one, with a total of 3166 genes, was selected as a specific module through sample and gene expression pattern analyses. A total of 584 candidate hub genes in the module were screened by the correlation coefficients between the genes and module eigenvalue and gene connectivity. Finally, GO/KEGG functional enrichment analyses detected WNT10A as a key gene in the development and maturation of skin hair follicles in fetal Inner Mongolian cashmere goats. qPCR showed that the expression trends of 13 genes from seven fetal skin samples were consistent with the sequencing results, indicating that the sequencing results were reliable.n.
Collapse
Affiliation(s)
- Zhihong Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Erhan Hai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhengyang Di
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Rong Ma
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Fangzheng Shang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Lili Liang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Youjun Rong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Jianfeng Pan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Wenbin Wu
- Zhenlai Hehe Animal Husbandry Development Co., Ltd, Baicheng, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail: (JL); , (YZ)
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail: (JL); , (YZ)
| |
Collapse
|
20
|
Recent Advances in Signaling Pathways Comprehension as Carcinogenesis Triggers in Basal Cell Carcinoma. J Clin Med 2020; 9:jcm9093010. [PMID: 32961989 PMCID: PMC7565128 DOI: 10.3390/jcm9093010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common malignant skin tumor. BCC displays a different behavior compared with other neoplasms, has a slow evolution, and metastasizes very rarely, but sometimes it causes an important local destruction. Chronic ultraviolet exposure along with genetic factors are the most important risk factors involved in BCC development. Mutations in the PTCH1 gene are associated with Gorlin syndrome, an autosomal dominant disorder characterized by the occurrence of multiple BCCs, but are also the most frequent mutations observed in sporadic BCCs. PTCH1 encodes for PTCH1 protein, the most important negative regulator of the Hedgehog (Hh) pathway. There are numerous studies confirming Hh pathway involvement in BCC pathogenesis. Although Hh pathway has been intensively investigated, it remains incompletely elucidated. Recent studies on BCC tumorigenesis have shown that in addition to Hh pathway, there are other signaling pathways involved in BCC development. In this review, we present recent advances in BCC carcinogenesis.
Collapse
|
21
|
Martorana F, Vigneri P, Manzella L, Tirrò E, Soto Parra HJ. Delayed use of eribulin in a heavily pretreated liposarcoma patient, previously misdiagnosed as leiomyosarcoma. Future Oncol 2020; 16:9-13. [DOI: 10.2217/fon-2019-0596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Due to its low incidence, liposarcoma displays a limited number of therapeutic options. However, eribulin recently received approval for the treatment of advanced liposarcoma patients, progressing to at least two chemotherapy lines. We report herein the case of a man initially diagnosed with a leyomiosarcoma, subsequently reclassified as a dedifferentiated liposarcoma, who received eribulin after he failed several therapy lines. Eribulin provided our patient an 8-month disease control and a substantial clinical benefit with no relevant adverse effects, showing a good efficacy and safety profile despite its delayed employ. Additionally, this case strengthens the pivotal importance of molecular profiling in the management of soft tissue sarcomas.
Collapse
Affiliation(s)
- Federica Martorana
- Division of Medical Oncology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| | - Paolo Vigneri
- Division of Medical Oncology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Livia Manzella
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Elena Tirrò
- Center of Experimental Oncology & Hematology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
- Department of Clinical & Experimental Medicine, University of Catania, Catania, Italy
| | - Héctor J. Soto Parra
- Division of Medical Oncology, A.O.U. Policlinico-Vittorio Emanuele, Catania, Italy
| |
Collapse
|