1
|
Ye K, Guo Y, Chang N, Xu J, Qin Q, Yang X, Huang Y, Ge Q, Meng D, Zhao X. Micro-region transcriptomics profiling of cerebral organoids using a capillary-based microdissection system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3480-3489. [PMID: 40211824 DOI: 10.1039/d5ay00277j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Investigating the transcriptome while preserving cellular spatial information facilitates a comprehensive understanding of cellular fates in multicellular organisms. However, the precise and flexible isolation of micro-regions of interest (mROIs) for profiling spatial transcriptomics (ST) remains a challenge. We established a capillary-based tissue microdissection system (CMS), which enables the high-efficiency acquisition of mROIs from cultured cerebral organoids for mRNA sequencing (CMS-seq). Subsequently, neural progenitor cells (NPCs), intermediate progenitors (IPs), mature neurons, and astrocytes were annotated in the cerebral organoids at the stages of days 20 and 60, respectively. Furthermore, astrocytes in the samples from day 20 were found to exhibit a higher tendency to express the SPARC gene whereas those from day 60 showed a stronger tendency to express the NTRK2 gene. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes indicated a higher degree of neural development at the stage of day 60. Finally, a spatial annotation map of cell types of the mROIs was constructed, enabling rapid identification of the cellular composition in each mROI. Therefore, we established an efficient method for ST analysis in cerebral organoids and further exploration of the spatial developmental trajectory.
Collapse
Affiliation(s)
- Kaiqiang Ye
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Yunxia Guo
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ning Chang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Jitao Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Qingyang Qin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Xi Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Dianhuai Meng
- Rehabiliatation Center, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Fu J, Wu X, Zhang C, Tang Y, Zhou F, Zhang X, Fan S. Genomic Analysis of Talaromyces verruculosus SJ9: An Efficient Tetracycline-, Enrofloxacin-, and Tylosin-Degrading Fungus. Genes (Basel) 2024; 15:1643. [PMID: 39766911 PMCID: PMC11675779 DOI: 10.3390/genes15121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Many fungi related to Talaromyces verruculosus can degrade a wide range of pollutants and are widely distributed globally. T. verruculosus SJ9 was enriched from fresh strawberry inter-root soil to yield fungi capable of degrading tetracycline, enrofloxacin, and tylosin. METHODS T. verruculosus SJ9 genome was sequenced, assembled, and annotated in this study utilizing bioinformatics software, PacBio, and the Illumina NovaSeq PE150 technology. RESULTS The genome size is 40.6 Mb, the N50 scaffold size is 4,534,389 bp, and the predicted number of coding genes is 8171. The T. verruculosus TS63-9 genome has the highest resemblance to the T. verruculosus SJ9 genome, according to a comparative genomic analysis of seven species. In addition, we annotated many genes encoding antibiotic-degrading enzymes in T. verruculosus SJ9 through genomic databases, which also provided strong evidence for its ability to degrade antibiotics. CONCLUSIONS Through the correlation analysis of the whole-genome data of T. verruculosus SJ9, we identified a number of genes capable of encoding antibiotic-degrading enzymes in its gene function annotation database. These antibiotic-related enzymes provide some evidence that T. verruculosus SJ9 can degrade fluoroquinolone antibiotics, tetracycline antibiotics, and macrolide antibiotics. In summary, the complete genome sequence of T. verruculosus SJ9 has now been published, and this resource constitutes a significant dataset that will inform forthcoming transcriptomic, proteomic, and metabolic investigations of this fungal species. In addition, genomic studies of other filamentous fungi can utilize it as a reference. Thanks to the discoveries made in this study, the future application of this fungus in industrial production will be more rapid.
Collapse
Affiliation(s)
- Jing Fu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Xiaoqing Wu
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Chi Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Yuhan Tang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| | - Fangyuan Zhou
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Xinjian Zhang
- Institute of Ecology, Shandong Academy of Sciences, Jinan 250103, China; (X.W.); (F.Z.)
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (J.F.); (C.Z.); (Y.T.)
| |
Collapse
|
3
|
Nguyen TH, Kang BY, Kim HH. Chromosomal dynamics in Senna: comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations. FRONTIERS IN PLANT SCIENCE 2023; 14:1288220. [PMID: 38173930 PMCID: PMC10762312 DOI: 10.3389/fpls.2023.1288220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Introduction Tandem repeats (TRs) occur abundantly in plant genomes. They play essential roles that affect genome organization and evolution by inducing or generating chromosomal rearrangements such as duplications, deletions, inversions, and translocations. These impact gene expression and chromosome structure and even contribute to the emergence of new species. Method We investigated the effects of TRs on speciation in Senna genus by performing a comparative analysis using fluorescence in situ hybridization (FISH) with S. tora-specific TR probes. We examined the chromosomal distribution of these TRs and compared the genome sizes of seven Senna species (estimated using flow cytometry) to better understand their evolutionary relationships. Results Two (StoTR03_159 and StoTR04_55) of the nine studied TRs were not detected in any of the seven Senna species, whereas the remaining seven were found in all or some species with patterns that were similar to or contrasted with those of S. tora. Of these studies species, only S. angulata showed significant genome rearrangements and dysploid karyotypes resembling those of S. tora. The genome sizes varied among these species and did not positively correlate with chromosome number. Notably, S. angulata had the fewest chromosomes (2n = 22) but a relatively large genome size. Discussion These findings reveal the dynamics of TRs and provide a cytogenetic depiction of chromosomal rearrangements during speciation in Senna. To further elucidate the dynamics of repeat sequences in Senna, future studies must include related species and extensive repeatomic studies, including those on transposable elements.
Collapse
Affiliation(s)
| | | | - Hyun Hee Kim
- Chromosome Research Institute, Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Orlov YL, Anashkina AA, Kumeiko VV, Chen M, Kolchanov NA. Research Topics of the Bioinformatics of Gene Regulation. Int J Mol Sci 2023; 24:ijms24108774. [PMID: 37240120 DOI: 10.3390/ijms24108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The study of gene expression regulation raises the challenge of developing bioinformatics tools and algorithms, demanding data integration [...].
Collapse
Affiliation(s)
- Yuriy L Orlov
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Life Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Anastasia A Anashkina
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim V Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Life Sciences Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Cai Z, Zhao X, Zhou C, Fang T, Liu G, Luo J. Genome-Wide Mining of the Tandem Duplicated Type III Polyketide Synthases and Their Expression, Structure Analysis of Senna tora. Int J Mol Sci 2023; 24:ijms24054837. [PMID: 36902267 PMCID: PMC10003783 DOI: 10.3390/ijms24054837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Senna tora is one of the homologous crops used as a medicinal food containing an abundance of anthraquinones. Type III polyketide synthases (PKSs) are key enzymes that catalyze polyketide formation; in particular, the chalcone synthase-like (CHS-L) genes are involved in anthraquinone production. Tandem duplication is a fundamental mechanism for gene family expansion. However, the analysis of the tandem duplicated genes (TDGs) and the identification and characterization of PKSs have not been reported for S. tora. Herein, we identified 3087 TDGs in the S. tora genome; the synonymous substitution rates (Ks) analysis indicated that the TDGs had recently undergone duplication. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the type III PKSs were the most enriched TDGs involved in the biosynthesis of the secondary metabolite pathways, as evidenced by 14 tandem duplicated CHS-L genes. Subsequently, we identified 30 type III PKSs with complete sequences in the S. tora genome. Based on the phylogenetic analysis, the type III PKSs were classified into three groups. The protein conserved motifs and key active residues showed similar patterns in the same group. The transcriptome analysis showed that the chalcone synthase (CHS) genes were more highly expressed in the leaves than in the seeds in S. tora. The transcriptome and qRT-PCR analysis showed that the CHS-L genes had a higher expression in the seeds than in other tissues, particularly seven tandem duplicated CHS-L2/3/5/6/9/10/13 genes. The key active-site residues and three-dimensional models of the CHS-L2/3/5/6/9/10/13 proteins showed slight variation. These results indicated that the rich anthraquinones in S. tora seeds might be ascribed to the PKSs' expansion from tandem duplication, and the seven key CHS-L2/3/5/6/9/10/13 genes provide candidate genes for further research. Our study provides an important basis for further research on the regulation of anthraquinones' biosynthesis in S. tora.
Collapse
Affiliation(s)
- Zeping Cai
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
| | - Xingkun Zhao
- College of Tropical Crops & College of Life Sciences, Hainan University, Haikou 570228, China
| | - Chaoye Zhou
- College of Tropical Crops & College of Life Sciences, Hainan University, Haikou 570228, China
| | - Ting Fang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (G.L.); (J.L.)
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (G.L.); (J.L.)
| |
Collapse
|
6
|
Mund NK, Čellárová E. Recent advances in the identification of biosynthetic genes and gene clusters of the polyketide-derived pathways for anthraquinone biosynthesis and biotechnological applications. Biotechnol Adv 2023; 63:108104. [PMID: 36716800 DOI: 10.1016/j.biotechadv.2023.108104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
Natural anthraquinones are represented by a large group of compounds. Some of them are widespread across the kingdoms, especially in bacteria, fungi and plants, while the others are restricted to certain groups of organisms. Despite the significant pharmacological potential of several anthraquinones (hypericin, skyrin and emodin), their biosynthetic pathways and candidate genes coding for key enzymes have not been experimentally validated. Understanding the genetic and epigenetic regulation of the anthraquinone biosynthetic gene clusters in fungal endophytes would help not only understand their pathways in plants, which ensure their commercial availability, but also favor them as promising systems for prospective biotechnological production.
Collapse
Affiliation(s)
- Nitesh Kumar Mund
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia
| | - Eva Čellárová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Genetics, Mánesova 23, 041 54 Košice, Slovakia.
| |
Collapse
|
7
|
Sheikh-Assadi M, Naderi R, Salami SA, Kafi M, Fatahi R, Shariati V, Martinelli F, Cicatelli A, Triassi M, Guarino F, Improta G, Claros MG. Normalized Workflow to Optimize Hybrid De Novo Transcriptome Assembly for Non-Model Species: A Case Study in Lilium ledebourii (Baker) Boiss. PLANTS 2022; 11:plants11182365. [PMID: 36145766 PMCID: PMC9503428 DOI: 10.3390/plants11182365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
A high-quality transcriptome is required to advance numerous bioinformatics workflows. Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcriptomes looks somewhat unexplored, particularly for non-model organisms with complicated (very long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome assembly programs, this study built 11 single assemblies and analyzed their performance on some significant reference-free and reference-based criteria. As well as to reconfirm the outputs of benchmarks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely, normalized benchmarking demonstrated that Velvet–Oases suffer from the worst results, while the EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it could capture even up to 59% more (than Velvet–Oases) unique gene hits. To promote assembly optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each metric can only provide part of the transcriptome status, and one should never settle for just a few evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly strategy might result in less identification of unique gene hits.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (M.S.-A.); (R.N.)
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (M.S.-A.); (R.N.)
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Manuel Gonzalo Claros
- Molecular Biology and Biochemistry Department, University of Málaga, 29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), 29010 Málaga, Spain
| |
Collapse
|
8
|
Kang SH, Lee WH, Sim JS, Thaku N, Chang S, Hong JP, Oh TJ. De novo Transcriptome Assembly of Senna occidentalis Sheds Light on the Anthraquinone Biosynthesis Pathway. FRONTIERS IN PLANT SCIENCE 2022; 12:773553. [PMID: 35046973 PMCID: PMC8761625 DOI: 10.3389/fpls.2021.773553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Senna occidentalis is an annual leguminous herb that is rich in anthraquinones, which have various pharmacological activities. However, little is known about the genetics of S. occidentalis, particularly its anthraquinone biosynthesis pathway. To broaden our understanding of the key genes and regulatory mechanisms involved in the anthraquinone biosynthesis pathway, we used short RNA sequencing (RNA-Seq) and long-read isoform sequencing (Iso-Seq) to perform a spatial and temporal transcriptomic analysis of S. occidentalis. This generated 121,592 RNA-Seq unigenes and 38,440 Iso-Seq unigenes. Comprehensive functional annotation and classification of these datasets using public databases identified unigene sequences related to major secondary metabolite biosynthesis pathways and critical transcription factor families (bHLH, WRKY, MYB, and bZIP). A tissue-specific differential expression analysis of S. occidentalis and measurement of the amount of anthraquinones revealed that anthraquinone accumulation was related to the gene expression levels in the different tissues. In addition, the amounts and types of anthraquinones produced differ between S. occidentalis and S. tora. In conclusion, these results provide a broader understanding of the anthraquinone metabolic pathway in S. occidentalis.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Niha Thaku
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, South Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan, South Korea
- Genome-Based BioIT Convergence Institute, Asan, South Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, South Korea
| |
Collapse
|
9
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|
10
|
Whole Genome Sequencing and Annotation of Naematelia aurantialba (Basidiomycota, Edible-Medicinal Fungi). J Fungi (Basel) 2021; 8:jof8010006. [PMID: 35049946 PMCID: PMC8777972 DOI: 10.3390/jof8010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022] Open
Abstract
Naematelia aurantialba is a rare edible fungus with both nutritional and medicinal values and especially rich in bioactive polysaccharides. However, due to the lack of genomic information, researches on the mining of active compounds, artificial breeding and cultivation, genetics, and molecular biology are limited. To facilitate the medicinal and food applications of N. aurantialba, we sequenced and analyzed the whole genome of N. aurantialba for the first time. The 21-Mb genome contained 15 contigs, and a total of 5860 protein-coding genes were predicted. The genome sequence shows that 296 genes are related to polysaccharide synthesis, including 15 genes related to nucleoside-activated sugar synthesis and 11 genes related to glucan synthesis. The genome also contains genes and gene clusters for the synthesis of other active substances, including terpenoids, unsaturated fatty acids, and bioactive proteins. In addition, it was also found that N. aurantialba was more closely related to Naematelia encephala than to Tremella fuciformis. In short, this study provides a reference for molecular cognition of N. aurantialba and related researches.
Collapse
|
11
|
Kang JN, Lee WH, Won SY, Chang S, Hong JP, Oh TJ, Lee SM, Kang SH. Systemic Expression of Genes Involved in the Plant Defense Response Induced by Wounding in Senna tora. Int J Mol Sci 2021; 22:ijms221810073. [PMID: 34576236 PMCID: PMC8469979 DOI: 10.3390/ijms221810073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/05/2023] Open
Abstract
Wounds in tissues provide a pathway of entry for pathogenic fungi and bacteria in plants. Plants respond to wounding by regulating the expression of genes involved in their defense mechanisms. To analyze this response, we investigated the defense-related genes induced by wounding in the leaves of Senna tora using RNA sequencing. The genes involved in jasmonate and ethylene biosynthesis were strongly induced by wounding, as were a large number of genes encoding transcription factors such as ERFs, WRKYs, MYBs, bHLHs, and NACs. Wounding induced the expression of genes encoding pathogenesis-related (PR) proteins, such as PR-1, chitinase, thaumatin-like protein, cysteine proteinase inhibitor, PR-10, and plant defensin. Furthermore, wounding led to the induction of genes involved in flavonoid biosynthesis and the accumulation of kaempferol and quercetin in S. tora leaves. All these genes were expressed systemically in leaves distant from the wound site. These results demonstrate that mechanical wounding can lead to a systemic defense response in the Caesalpinioideae, a subfamily of the Leguminosae. In addition, a co-expression analysis of genes induced by wounding provides important information about the interactions between genes involved in plant defense responses.
Collapse
Affiliation(s)
- Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Korea; (W.-H.L.); (T.-J.O.)
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Saemin Chang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Jong-Pil Hong
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Korea; (W.-H.L.); (T.-J.O.)
| | - Si Myung Lee
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
- Correspondence: (S.M.L.); (S.-H.K.)
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (J.-N.K.); (S.Y.W.); (S.C.); (J.-P.H.)
- Correspondence: (S.M.L.); (S.-H.K.)
| |
Collapse
|
12
|
Wang X, Hu H, Wu Z, Fan H, Wang G, Chai T, Wang H. Tissue-specific transcriptome analyses reveal candidate genes for stilbene, flavonoid and anthraquinone biosynthesis in the medicinal plant Polygonum cuspidatum. BMC Genomics 2021; 22:353. [PMID: 34000984 PMCID: PMC8127498 DOI: 10.1186/s12864-021-07658-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Polygonum cuspidatum Sieb. et Zucc. is a well-known medicinal plant whose pharmacological effects derive mainly from its stilbenes, anthraquinones, and flavonoids. These compounds accumulate differentially in the root, stem, and leaf; however, the molecular basis of such tissue-specific accumulation remains poorly understood. Because tissue-specific accumulation of compounds is usually associated with tissue-specific expression of the related biosynthetic enzyme genes and regulators, we aimed to clarify and compare the transcripts expressed in different tissues of P. cuspidatum in this study. RESULTS High-throughput RNA sequencing was performed using three different tissues (the leaf, stem, and root) of P. cuspidatum. In total, 80,981 unigenes were obtained, of which 40,729 were annotated, and 21,235 differentially expressed genes were identified. Fifty-four candidate synthetase genes and 12 transcription factors associated with stilbene, flavonoid, and anthraquinone biosynthetic pathways were identified, and their expression levels in the three different tissues were analyzed. Phylogenetic analysis of polyketide synthase gene families revealed two novel CHS genes in P. cuspidatum. Most phenylpropanoid pathway genes were predominantly expressed in the root and stem, while methylerythritol 4-phosphate and isochorismate pathways for anthraquinone biosynthesis were dominant in the leaf. The expression patterns of synthase genes were almost in accordance with metabolite profiling in different tissues of P. cuspidatum as measured by high-performance liquid chromatography or ultraviolet spectrophotometry. All predicted transcription factors associated with regulation of the phenylpropanoid pathway were expressed at lower levels in the stem than in the leaf and root, but no consistent trend in their expression was observed between the leaf and the root. CONCLUSIONS The molecular knowledge of key genes involved in the biosynthesis of P. cuspidatum stilbenes, flavonoids, and anthraquinones is poor. This study offers some novel insights into the biosynthetic regulation of bioactive compounds in different P. cuspidatum tissues and provides valuable resources for the potential metabolic engineering of this important medicinal plant.
Collapse
Affiliation(s)
- Xiaowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Hongyan Hu
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Zhijun Wu
- School of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Haili Fan
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Guowei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hong Wang
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
| |
Collapse
|
13
|
Waminal NE, Pellerin RJ, Kang SH, Kim HH. Chromosomal Mapping of Tandem Repeats Revealed Massive Chromosomal Rearrangements and Insights Into Senna tora Dysploidy. FRONTIERS IN PLANT SCIENCE 2021; 12:629898. [PMID: 33643358 PMCID: PMC7902697 DOI: 10.3389/fpls.2021.629898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/21/2021] [Indexed: 05/16/2023]
Abstract
Tandem repeats can occupy a large portion of plant genomes and can either cause or result from chromosomal rearrangements, which are important drivers of dysploidy-mediated karyotype evolution and speciation. To understand the contribution of tandem repeats in shaping the extant Senna tora dysploid karyotype, we analyzed the composition and abundance of tandem repeats in the S. tora genome and compared the chromosomal distribution of these repeats between S. tora and a closely related euploid, Senna occidentalis. Using a read clustering algorithm, we identified the major S. tora tandem repeats and visualized their chromosomal distribution by fluorescence in situ hybridization. We identified eight independent repeats covering ~85 Mb or ~12% of the S. tora genome. The unit lengths and copy numbers had ranges of 7-5,833 bp and 325-2.89 × 106, respectively. Three short duplicated sequences were found in the 45S rDNA intergenic spacer, one of which was also detected at an extra-NOR locus. The canonical plant telomeric repeat (TTTAGGG)n was also detected as very intense signals in numerous pericentromeric and interstitial loci. StoTR05_180, which showed subtelomeric distribution in Senna occidentalis, was predominantly pericentromeric in S. tora. The unusual chromosomal distribution of tandem repeats in S. tora not only enabled easy identification of individual chromosomes but also revealed the massive chromosomal rearrangements that have likely played important roles in shaping its dysploid karyotype.
Collapse
Affiliation(s)
- Nomar Espinosa Waminal
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Remnyl Joyce Pellerin
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hyun Hee Kim
- Department of Chemistry and Life Science, BioScience Institute, Sahmyook University, Seoul, South Korea
- *Correspondence: Hyun Hee Kim
| |
Collapse
|
14
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020; 11:5875. [PMID: 33208749 PMCID: PMC7674472 DOI: 10.1038/s41467-020-19681-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|
15
|
Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020. [PMID: 33208749 DOI: 10.1101/2020.04.27.063495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Senna tora is a widely used medicinal plant. Its health benefits have been attributed to the large quantity of anthraquinones, but how they are made in plants remains a mystery. To identify the genes responsible for plant anthraquinone biosynthesis, we reveal the genome sequence of S. tora at the chromosome level with 526 Mb (96%) assembled into 13 chromosomes. Comparison among related plant species shows that a chalcone synthase-like (CHS-L) gene family has lineage-specifically and rapidly expanded in S. tora. Combining genomics, transcriptomics, metabolomics, and biochemistry, we identify a CHS-L gene contributing to the biosynthesis of anthraquinones. The S. tora reference genome will accelerate the discovery of biologically active anthraquinone biosynthesis pathways in medicinal plants.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea.
| | - Ramesh Prasad Pandey
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chang-Muk Lee
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Joon-Soo Sim
- Metabolic Engineering Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jin-Tae Jeong
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 55365, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Myunghee Jung
- Department of Forest Science, College of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Daniel Ginzburg
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Kangmei Zhao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - So Youn Won
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Yeisoo Yu
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
- DNACARE Co. Ltd, Seoul, 06730, Republic of Korea
| | - Nam-Hoon Kim
- Phyzen Genomics Institute, Seongnam, 13488, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Ho Lee
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Puspalata Bashyal
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea
| | - Charles Hawkins
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Jung Sun Kim
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Byoung Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences, RDA, Jeonju, 54874, Republic of Korea
| | - Seung Yon Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, 31460, Republic of Korea.
| |
Collapse
|