1
|
Marcolino M, Guimarães ML, Fontes MDL, Resende FA, Barud HDS, Azevedo AS, Azevedo NF, de Oliveira HP. Investigating Polypyrrole/Silver-Based Composite for Biofilm Prevention on Silicone Surfaces for Urinary Catheter Applications. ACS OMEGA 2025; 10:7058-7068. [PMID: 40028113 PMCID: PMC11866176 DOI: 10.1021/acsomega.4c10109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are among the most common healthcare-related infections caused by biofilm formation. This research investigated the efficacy of polypyrrole (PPy), silver nanoparticles (AgNPs), and their combination (PPy/AgNPs) as water-soluble additives applied in cleaning procedures for preventing the formation of Escherichia coli and Staphylococcus aureus (single and dual-species biofilms) on silicone. Ultraviolet-visible absorption assays, scanning electron microscopy (SEM) images, FTIR analysis, and dynamic light scattering experiments were conducted to evaluate the structure and physicochemical response of the antibiofilm compounds, with the biofilm prevention concentrations assessed by plate counting, flow cytometry, and SEM images. The composites proved to be dose-dependent agents preventing single- and dual-species biofilms from forming under simulated CAUTI conditions. Furthermore, cytotoxicity assays indicated that the materials are non-cytotoxic, supporting their suitability for biomedical applications. These findings pave the way for developing more effective, biocompatible catheter cleaning procedures, ultimately improving patient outcomes and addressing biofilms-related infections in clinical settings.
Collapse
Affiliation(s)
- Maíra
C. Marcolino
- LEIMO—Impedance
Spectroscopy and Organic Materials Laboratory, Federal University of Vale do São Francisco (UNIVASF), Juazeiro 48902-300, Bahia, Brazil
- RENORBIO—Northeast
Biotechnology Network, Federal Rural University
of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil
| | - Milena L. Guimarães
- LEIMO—Impedance
Spectroscopy and Organic Materials Laboratory, Federal University of Vale do São Francisco (UNIVASF), Juazeiro 48902-300, Bahia, Brazil
- RENORBIO—Northeast
Biotechnology Network, Federal Rural University
of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil
| | - Marina de L. Fontes
- Federal
University of São Carlos (UFSCar), São Carlos 13565-905, São Paulo, Brazil
| | - Flávia A. Resende
- University
of Araraquara (Uniara), Araraquara 14801-340, São Paulo, Brazil
| | | | - Andreia S. Azevedo
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Porto 4099-002, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto 4099-002, Portugal
| | - Nuno F. Azevedo
- LEPABE—Laboratory
for Process Engineering, Environment, Biotechnology and Energy, Faculty
of Engineering, University of Porto, Porto 4099-002, Portugal
- ALiCE—Associate
Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto 4099-002, Portugal
| | - Helinando P. de Oliveira
- LEIMO—Impedance
Spectroscopy and Organic Materials Laboratory, Federal University of Vale do São Francisco (UNIVASF), Juazeiro 48902-300, Bahia, Brazil
- RENORBIO—Northeast
Biotechnology Network, Federal Rural University
of Pernambuco (UFRPE), Recife 52171-900, Pernambuco, Brazil
| |
Collapse
|
2
|
Li Y, Cheng L, Li M. Effects of Green Tea Extract Epigallocatechin-3-Gallate on Oral Diseases: A Narrative Review. Pathogens 2024; 13:634. [PMID: 39204235 PMCID: PMC11357325 DOI: 10.3390/pathogens13080634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
OBJECTIVES Oral diseases are among the most prevalent diseases globally. Accumulating new evidence suggests considerable benefits of epigallocatechin-3-gallate (EGCG) for oral health. This review aims to explore the role and application of EGCG in main oral diseases. METHODS This narrative review thoroughly examines and summarizes the most recent literature available in scientific databases (PubMed, Web of Science, Scopus, and Google Scholar) reporting advances in the role and application of EGCG within the dental field. The major keywords used included "EGCG", "green tea extract", "oral health", "caries", "pulpitis", "periapical disease", "periodontal disease", "oral mucosa", "salivary gland", and "oral cancer". CONCLUSIONS EGCG prevents and manages various oral diseases through its antibacterial, anti-inflammatory, antioxidant, and antitumor properties. Compared to traditional treatments, EGCG generally exhibits lower tissue irritation and positive synergistic effects when combined with other therapies. Novel delivery systems or chemical modifications can significantly enhance EGCG's bioavailability, prolong its action, and reduce toxicity, which are current hotspots in developing new materials. CLINICAL SIGNIFICANCE this review provides an exhaustive overview of the biological activities of EGCG to major oral diseases, alongside an exploration of applications and limitations, which serves as a reference for preventing and managing oral ailments.
Collapse
Affiliation(s)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
3
|
Li E, Li S, Wang S, Li Q, Pang D, Yang Q, Zhu Q, Zou Y. Antibacterial Effects of Ramulus mori Oligosaccharides against Streptococcus mutans. Foods 2023; 12:3182. [PMID: 37685114 PMCID: PMC10486356 DOI: 10.3390/foods12173182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Ramulus mori has been widely used in traditional Chinese medicine because of its physiological activities, including antibacterial, anti-inflammatory, and antioxidant activities. Antimicrobial properties of Ramulus mori extract have been well described. However, no information is available regarding on Ramulus mori oligosaccharides (RMOS). The aim of this study was to investigate the effects of RMOS on the growth and virulence properties of the cariogenic bacterium Streptococcus mutans. The effects of RMOS on the biofilm structure and virulence gene expression of S. mutans were also evaluated, and the results were compared with the effects of commercial prebiotic galactooligosaccharides. RMOS were found to have an antibacterial effect against S. mutans, resulting in significant reductions in acid production, lactate dehydrogenase activity, adhesion, insoluble extracellular polysaccharide production, glucosyltransferase activity, and biofilm formation in a dose-dependent manner. Moreover, the biofilm structure was visibly damaged. A quantitative real-time PCR assay revealed downregulation of virulence gene-regulated acid production, polysaccharide production, adhesion, biofilm formation, and quorum sensing. These findings suggest that RMOS may be a promising natural product for the prevention of dental caries.
Collapse
Affiliation(s)
- Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Shipei Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Siyuan Wang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qian Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Daorui Pang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qiong Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| | - Qiaoling Zhu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; (E.L.)
| |
Collapse
|
4
|
Borges MHR, Nagay BE, Costa RC, Souza JGS, Mathew MT, Barão VAR. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv Colloid Interface Sci 2023; 314:102860. [PMID: 36931199 DOI: 10.1016/j.cis.2023.102860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.
Collapse
Affiliation(s)
- Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
5
|
Kong C, Zhang H, Li L, Liu Z. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review. J Oral Microbiol 2022; 14:2131117. [PMID: 36212989 PMCID: PMC9542882 DOI: 10.1080/20002297.2022.2131117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
For thousands of years, caries, periodontitis and mucosal diseases, which are closely related to oral microorganisms, have always affected human health and quality of life. These complex microbiota present in different parts of the mouth can cause chronic infections in the oral cavity under certain conditions, some of which can also lead to acute and systemic diseases. With the mutation of related microorganisms and the continuous emergence of drug-resistant strains, in order to prevent and treat related diseases, in addition to the innovation of diagnosis and treatment technology, the development of new antimicrobial drugs is also important. Catechins are polyphenolic compounds in green tea, some of which are reported to provide health benefits for a variety of diseases. Studies have shown that epigallocatechin-3-gallate (EGCG) is the most abundant and effective active ingredient in green tea catechins, which acts against a variety of gram-positive and negative bacteria, as well as some fungi and viruses. This review aims to summarize the research progress on the activity of EGCG against common oral disease-associated organisms and discuss the mechanisms of these actions, hoping to provide new medication strategies for the prevention and treatment of oral infectious diseases, the future research of EGCG and its translation into clinical practice are also discussed.
Collapse
Affiliation(s)
- Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Huili Zhang
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Lingfeng Li
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Chen R, Du M, Liu C. Strategies for dispersion of cariogenic biofilms: applications and mechanisms. Front Microbiol 2022; 13:981203. [PMID: 36134140 PMCID: PMC9484479 DOI: 10.3389/fmicb.2022.981203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022] Open
Abstract
Bacteria residing within biofilms are more resistant to drugs than planktonic bacteria. They can thus play a significant role in the onset of chronic infections. Dispersion of biofilms is a promising avenue for the treatment of biofilm-associated diseases, such as dental caries. In this review, we summarize strategies for dispersion of cariogenic biofilms, including biofilm environment, signaling pathways, biological therapies, and nanovehicle-based adjuvant strategies. The mechanisms behind these strategies have been discussed from the components of oral biofilm. In the future, these strategies may provide great opportunities for the clinical treatment of dental diseases. Graphical Abstract.
Collapse
|
7
|
Liu J, Wu BL, Zhu WZ, Liu J, Wang T, Geng MM, Bai L, Liu Y. [Effect of hypochloric acid on Escherichia coli biofilm and the clinical efficacy of hypochloric acid for wounds with Escherichia coli infection]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:242-250. [PMID: 35325969 DOI: 10.3760/cma.j.cn501120-20201112-00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Objective: To investigate the effect of hypochloric acid on Escherichia coli biofilm and the clinical efficacy of hypochloric acid for wounds with Escherichia coli infection. Methods: One strain of Escherichia coli with the strongest bacterial biofilm forming ability among the strains isolated from specimens in 25 patients (16 males and 9 females, aged 32-67 years) from five clinical departments of the 940th Hospital of the Joint Logistic Support Force was collected for the experimental study from September to December 2019. The Escherichia coli was cultured with hypochloric acid at 162.96, 81.48, 40.74, 20.37, 10.18, 5.09, 2.55, 1.27, 0.64, and 0.32 μg/mL respectively to screen the minimum bactericidal concentration (MBC) of hypochloric acid. The Escherichia coli was cultured with hypochloric acid at the screened MBC for 2, 5, 10, 20, 30, and 60 min respectively to screen the shortest bactericidal time of hypochloric acid. The biofilm formation of Escherichia coli was observed by scanning electron microscopy at 6, 12, 24, 48, 72, and 96 h of incubation, respectively. After 72 h of culture, hypochloric acid at 1, 2, 4, 8, and 16 times of MBC was respectively added to Escherichia coli to screen the minimum biofilm eradicate concentration (MBEC) of hypochloric acid against Escherichia coli. After hypochloric acid at 1, 2, 4, and 8 times of MBEC and sterile saline were respectively added to Escherichia coli for 10 min, the live/dead bacterial staining kit was used to detect the number of live and dead cells, with the rate of dead bacteria calculated (the number of samples was 5). From January to December 2020, 41 patients with infectious wounds meeting the inclusion criteria and admitted to the Department of Burns and Plastic Surgery of the 940th Hospital of Joint Logistic Support Force of PLA were included into the prospective randomized controlled trial. The patients were divided into hypochloric acid group with 21 patients (13 males and 8 females, aged (46±14) years) and povidone iodine group with 20 patients (14 males and 6 females, aged (45±19) years) according to the random number table. Patients in the 2 groups were respectively dressed with sterile gauze soaked with hypochloric acid of 100 μg/mL and povidone iodine solution of 50 mg/mL with the dressings changed daily. Before the first dressing change and on the 10th day of dressing change, tissue was taken from the wound and margin of the wound for culturing bacteria by agar culture method and quantifying the number of bacteria. The amount of wound exudate and granulation tissue growth were observed visually and scored before the first dressing change and on the 3rd, 7th, and 10th days of dressing change. Data were statistically analyzed with one-way analysis of variance, Dunnett-t test, independent sample t test, Mann-Whitney U test, Wilcoxon signed-rank test, chi-square test, or Fisher's exact probability test. Results: The MBC of hypochloric acid against Escherichia coli was 10.18 μg/mL, and the shortest bactericidal time of hypochloric acid with MBC against Escherichia coli was 2 min. Escherichia coli was in a completely free state after 6 and 12 h of culture and gradually aggregated and adhered with the extension of culture time, forming a mature biofilm at 72 h of culture. The MBEC of hypochloric acid against Escherichia coli was 20.36 μg/mL. The Escherichia coli mortality rates after incubation with hypochloric acid at 1, 2, 4, and 8 times of MBEC for 10 min were significantly higher than that after incubation with sterile saline (with t values of 6.11, 25.04, 28.90, and 40.74, respectively, P<0.01). The amount of bacteria in the wound tissue of patients in hypochloric acid group on the 10th day of dressing change was 2.61 (2.20, 3.30)×104 colony forming unit (CFU)/g, significantly less than 4.77 (2.18, 12.48)×104 CFU/g in povidone iodine group (Z=2.06, P<0.05). The amounts of bacteria in the wound tissue of patients in hypochloric acid group and povidone iodine group on the 10th day of dressing change were significantly less than 2.97 (2.90, 3.04)×106 and 2.97 (1.90, 7.95)×106 CFU/g before the first dressing change (with Z values of 4.02 and 3.92, respectively, P<0.01). The score of wound exudate amount of patients in hypochloric acid group on the 10th day of dressing change was significantly lower than that in povidone iodine group (Z=2.07, P<0.05). Compared with those before the first dressing change, the scores of wound exudate amount of patients in hypochloric acid group on the 7th and 10th days of dressing change were significantly decreased (with Z values of -3.99 and -4.12, respectively, P<0.01), and the scores of wound exudate amount of patients in povidone iodine group on the 7th and 10th days of dressing change were significantly decreased (with Z values of -3.54 and -3.93, respectively, P<0.01). The score of wound granulation tissue growth of patients in hypochloric acid group on the 10th day of dressing change was significantly higher than that in povidone iodine group (Z=2.02, P<0.05). Compared with those before the first dressing change, the scores of wound granulation tissue growth of patients in hypochloric acid group on the 7th and 10th days of dressing change were significantly increased (with Z values of -3.13 and -3.67, respectively, P<0.01), and the scores of wound granulation tissue growth of patients in povidone iodine group on the 7th and 10th days of dressing change were significantly increased (with Z values of -3.12 and -3.50, respectively, P<0.01). Conclusions: Hypochloric acid can kill Escherichia coli both in free and biofilm status. Hypochloric acid at a low concentration shows a rapid bactericidal effect on mature Escherichia coli biofilm, and the higher the concentration of hypochloric acid, the better the bactericidal effect. The hypochloric acid of 100 μg/mL is effective in reducing the bacterial load on wounds with Escherichia coli infection in patients, as evidenced by a reduction in wound exudate and indirect promotion of granulation tissue growth, which is more effective than povidone iodine, the traditional topical antimicrobial agent.
Collapse
Affiliation(s)
- J Liu
- Department of Burns and Plastic Surgery, the First Hospital of Yulin, Yulin 719000, China
| | - B L Wu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750000, China
| | - W Z Zhu
- Clinical Medical College, Ningxia Medical University, Yinchuan 750000, China
| | - J Liu
- Department of Burns and Plastic Surgery, the 940th Hospital of the Joint Logistic Support Force of PLA, Lanzhou 730050, China
| | - T Wang
- Department of Burns and Plastic Surgery & Wound Repair Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - M M Geng
- Clinical Medical College, Ningxia Medical University, Yinchuan 750000, China
| | - L Bai
- Intensive Care Unit, Traditional Chinese Medicine Hospital of Yulin, Yulin 719000, China
| | - Y Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
8
|
徐 丽, 刘 姗, 王 敏, 刘 芳, 张 容, 张 凯. [Regulatory role of small RNA srn821978 in mutacin IV expression in Streptococcus mutans]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1725-1732. [PMID: 34916201 PMCID: PMC8685694 DOI: 10.12122/j.issn.1673-4254.2021.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To analyze the role of small RNA srn821798 in posttranscriptional regulation of mutacin IV expression in Streptococcus mutans. METHODS The potential target genes of srn821978 were predicted using RNAhybrid, RNAPredator and IntaRNA. We collected 10 Streptococcus mutans (S.muans) strains with high expression of mutacin IV and another 10 S.muans strains that did not express mutacin IV screened by inhibition zone test, and the expression levels of srn821798 and the candidate target genes in these strains were detected by qPCR. Using synthesized mimics and inhibitors of srn821798, we constructed S.muans strains with high or low srn821798 expression via electroporation based on the standard strain of S.muans UA159, and analyzed the expression levels of srn821798 and its candidate target genes in these strains. We also examined the binding ability of srn821798 to its target gene sepM using electrophoresis and a dual- luciferase reporter system. RESULTS The expression levels of the candidate target genes of srn821798 including sepM, comD, comE, nlmA and nlmB were significantly higher while the expression level of srn821798 was significantly lower in clinical S.muans strains with high expression of mutacin IV than in those without mutacin IV expression (P < 0.05). Although the expression levels of the candidate target genes in strains with up- regulated or down- regulated srn821798 expression did not differ significantly from those in the standard strain, the expression level of sepM showed a trend of differential distribution, and srn821798 was predicted to have a strong binding ability to sepM action site. CONCLUSION srn821798 may play a regulatory role in the expression of mutacin IV in S.muans, but the underlying mechanism remains to be explored.
Collapse
Affiliation(s)
- 丽 徐
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 姗姗 刘
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 敏 王
- 蚌埠医学院第二附属医院口腔科,安徽 蚌埠 233040Department of Stomatology, Second Affiliated Hospital of Bengbu Medical College, Bengbu233040, China
| | - 芳 刘
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 容秀 张
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| | - 凯 张
- 蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu233004, China
| |
Collapse
|
9
|
Dai W, Zhang Y, Zhang J, Xue C, Yan J, Li X, Zheng X, Dong R, Bai J, Su Y, Xie P, Zhong W, Zhang H, Yan Z, Zhong W, Song Y. Analysis of Antibiotic-induced Drug Resistance of Salmonella Enteritidis and Its Biofilm Formation Mechanism. Bioengineered 2021; 12:10254-10263. [PMID: 34637696 PMCID: PMC8809914 DOI: 10.1080/21655979.2021.1988251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This research was to explore antibiotic-induced drug resistance of Salmonella enteritidis and its biofilm formation mechanism. Kirby-Bauer (K-B) disk method recommended by Clinical and Laboratory Standards Institute (CLSI) was used to test drug sensitivity of Salmonella enteritidis to 16 kinds of antibiotics including ß-lactams, aminoglycosides, quinolones, sulfonamides, chloramphenicols, and tetracyclines. Polymerase chain reaction (PCR) was performed to detect carrying of drug resistance genes of 29 kinds of antibiotics including ß-lactams, aminoglycosides, quinolones, sulfonamides, chloramphenicols, and tetracyclines of Salmonella enteritidis. The expressions of esp, ebpA, ge1E, and fsrB genes in biofilm group and plankton group were detected when Salmonella was induced, and difference of gene expression was detected by FQ-PCR. The drug resistance rates of Salmonella enteritidis to nalidixic acid, ampicillin, streptomyces, and cefoperazone were high, which were 94.5%, 75%, 67%, and 52%, respectively. 94 strains of Salmonella enteritidis formed 22 kinds of drug resistance spectrum, the strains were generally resistant to 4-5 antibiotics, and some strains formed fixed drug resistance spectrum as follows: AMP-CFP-STR-NA-TE (22.6,21.7%), AMP-STR-NA-TE (17,16%), and AMP-CFP-STR-NA (11.1,10.6%). During biofilm formation, fsr can increase expression of ge1E and decrease expression of esp and ebpA. Consequently, Salmonella enteritidis was generally resistant to nalidixic acid, ampicillin, and streptomycin, and the multidrug resistance was severe. The drug resistance genes sul2, sul3, blaTEM-1-like, tet(A), and tet(G) were highly carried in Salmonella enteritidis. Esp, ebpA, ge1E, and fsrB genes were closely related to biofilm formation of Salmonella enteritidis.
Collapse
Affiliation(s)
- Weiping Dai
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Yuliang Zhang
- Department of infectious diseases, Infectious Disease Hospital of Heilongjiang Province, Harbin 150500, Heilongjiang Province, China
| | - Jianfeng Zhang
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Chengyu Xue
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Jun Yan
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Xin Li
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Xiaohua Zheng
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Rui Dong
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Jing Bai
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Yi Su
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Pinghui Xie
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Weiming Zhong
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Hongyang Zhang
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Zibo Yan
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Weiqi Zhong
- Institute for disease control and prebertion, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin 150030, Heilongjiang Province, China
| | - Yu Song
- Food Science and Technology Branch, Heilongjiang Vocational College of Biology Science and Technology, Harbin 150025, Heilongjiang Province, China
| |
Collapse
|
10
|
The Influence of Propolis on Dental Plaque Reduction and the Correlation between Dental Plaque and Severity of COVID-19 Complications-A Literature Review. Molecules 2021; 26:molecules26185516. [PMID: 34576987 PMCID: PMC8469669 DOI: 10.3390/molecules26185516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Current studies suggest that cariogenic bacteria in dental plaque influence the severity of COVID-19 complications since the oral cavity is a reservoir for respiratory pathogens potentially responsible for the development of hospital-acquired pneumonia. This article focuses on the association between dental plaque and COVID-19 concerning the influence of altered oral biofilm on the risk of increased severity of SARS-CoV-2 infection. Moreover, it concentrates on the usefulness of propolis, with its apitherapeutic antibacterial properties, for treating oral bacterial infections co-occurring with SARS-CoV-2 infection. A review of the literature on PubMed, Cochrane Library and Medline between 2000 and 2021 revealed 56 published articles indicating that a link between dental plaque and COVID-19 complications was probable. Furthermore, they indicated that propolis may minimize COVID-19 severity by reducing dental plaque accumulation. The possibility that improved oral health could reduce the risk of COVID-19 complications should be of interest to scientists.
Collapse
|
11
|
Becerra-Ruiz JS, Guerrero-Velázquez C, Martínez-Esquivias F, Martínez-Pérez LA, Guzmán-Flores JM. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis 2021; 28:1441-1447. [PMID: 33884712 DOI: 10.1111/odi.13884] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Periodontal disease refers to inflammation of the tissues that support the tooth. It is of multifactorial etiology. Innate and adaptive immune cells participate jointly through the release of their molecules and mechanisms of action in order to maintain homeostasis in periodontal tissues, so the host's immune response plays an essential role in defense against microorganisms. However, bacterial persistence and the dysregulation of the immune system as an exaggerated response can lead to the worsening of periodontal disease, leading to loss of gingival tissue and alveolar bone and thereby loss of teeth. Therefore, a better understanding of the cellular mechanisms involved in the development of periodontal disease is necessary to design new treatments and prophylactic measures in order to decrease the prevalence of this disease that afflicts a large part of the world population.
Collapse
Affiliation(s)
- Julieta Saraí Becerra-Ruiz
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Celia Guerrero-Velázquez
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Jalisco, México
| | | | - Luz Andrea Martínez-Pérez
- Doctorado en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| | - Juan Manuel Guzmán-Flores
- Instituto de Investigación en Biociencias, Centro Universitario de Los Altos, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
12
|
Abstract
Biofilms are aggregates formed as a protective survival state by microorganisms to adapt to the environment and can be resistant to antimicrobial agents and host immune responses due to chemical or physical diffusion barriers, modified nutrient environments, suppression of the growth rate within biofilms, and the genetic adaptation of cells within biofilms. With the widespread use of medical devices, medical device-associated biofilms continue to pose a serious threat to human health, and these biofilms have become the most important source of nosocomial infections. However, traditional antimicrobial agents cannot completely eliminate medical device-associated biofilms. New strategies for the treatment of these biofilms and targeting biofilm infections are urgently required. Several novel approaches have been developed and identified as effective and promising treatments. In this review, we briefly summarize the challenges associated with the treatment of medical device-associated biofilm infections and highlight the latest promising approaches aimed at preventing or eradicating these biofilms.
Collapse
|
13
|
Tsujii T, Kawada-Matsuo M, Migita H, Ohta K, Oogai Y, Yamasaki Y, Komatsuzawa H. Antibacterial activity of phellodendron bark against Streptococcus mutans. Microbiol Immunol 2020; 64:424-434. [PMID: 32196736 DOI: 10.1111/1348-0421.12787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
Streptococcus mutans is a major cause of tooth decay due to its promotion of biofilm formation and acid production. Several plant extracts have been reported to have multiple biological activities such as anti-inflammation and antibacterial effects. This study investigated the antibacterial activity of three plant extracts, phellodendron bark (PB), yucca, and black ginger, and found that PB had a stronger effect than the other extracts. Then, the minimum inhibitory concentration (MIC) of PB against 100 S. mutans strains was investigated. The MIC range of PB was 9.8-312.5 µg/mL. PB suppressed the growth kinetics of S. mutans in a dose-dependent manner, even at sub-MICs of PB. Then, we investigated the effect of PB on S. mutans virulence. The PB suppressed biofilm formation at high concentrations, although PB did not affect the expression of glucosyltransferase genes. Additionally, PB suppressed the decrease in pH from adding an excess of glucose. The expression of genes responsible for acid production was increased by the addition of excess glucose without PB, whereas their expression levels were not increased in the presence of 1× and 2× MIC of PB. Although PB showed a bacteriostatic effect on planktonic S. mutans cells, it was found that more than 2× MIC of PB showed a partial bactericidal effect on biofilm cells. In conclusion, PB not only showed antibacterial activity against S. mutans but also decreased the cariogenic activity in S. mutans.
Collapse
Affiliation(s)
- Toshiya Tsujii
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirono Migita
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Youichi Yamasaki
- Department of Pediatric Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|