1
|
Kpeli GW, Conrad KM, Bralower W, Byrne CE, Boue SM, Burow ME, Mondrinos MJ. Xenohormetic Phytochemicals Inhibit Neovascularization in Microphysiological Models of Vasculogenesis and Tumor Angiogenesis. Adv Biol (Weinh) 2024; 8:e2300480. [PMID: 38831745 DOI: 10.1002/adbi.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Xenohormesis proposes that phytochemicals produced to combat stressors in the host plant exert biochemical effects in animal cells lacking cognate receptors. Xenohormetic phytochemicals such as flavonoids and phytoalexins modulate a range of human cell signaling mechanisms but functional correlations with human pathophysiology are lacking. Here, potent inhibitory effects of grapefruit-derived Naringenin (Nar) and soybean-derived Glyceollins (Gly) in human microphysiological models of bulk tissue vasculogenesis and tumor angiogenesis are reported. Despite this interference of vascular morphogenesis, Nar and Gly are not cytotoxic to endothelial cells and do not prevent cell cycle entry. The anti-vasculogenic effects of Glyceollin are significantly more potent in sex-matched female (XX) models. Nar and Gly do not decrease viability or expression of proangiogenic genes in triple negative breast cancer (TNBC) cell spheroids, suggesting that inhibition of sprouting angiogenesis by Nar and Gly in a MPS model of the (TNBC) microenvironment are mediated via direct effects in endothelial cells. The study supports further research of Naringenin and Glyceollin as health-promoting agents with special attention to mechanisms of action in vascular endothelial cells and the role of biological sex, which can improve the understanding of dietary nutrition and the pharmacology of phytochemical preparations.
Collapse
Affiliation(s)
- G Wills Kpeli
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - K Michael Conrad
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - William Bralower
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - C Ethan Byrne
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Stephen M Boue
- Southern Regional Research Center, US Department of Agriculture, New Orleans, LA, 70124, USA
| | - Matthew E Burow
- Section of Hematology & Medical Oncology, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mark J Mondrinos
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, 70118, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Center for Excellence in Sex-based Biology and Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
2
|
Mendiola M, Saarela J, Escudero FJ, Heredia-Soto V, Potdar S, Rodriguez-Marrero S, Miguel M, Pozo-Kreilinger JJ, Berjon A, Ortiz-Cruz E, Feliu J, Redondo A. Characterisation of new in vitro models and identification of potentially active drugs in angiosarcoma. Biomed Pharmacother 2024; 173:116397. [PMID: 38479181 DOI: 10.1016/j.biopha.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Angiosarcoma is a rare soft tissue sarcoma originating from endothelial cells. Given that current treatments for advanced disease have shown limited efficacy, alternative therapies need to be identified. In rare diseases, patient-derived cell models are crucial for screening anti-tumour activity. In this study, cell line models were characterised in 2D and 3D cultures. The cell lines' growth, migration and invasion capabilities were explored, confirming them as useful tools for preclinical angiosarcoma studies. By screening a drug library, we identified potentially effective compounds: 8-amino adenosine impacted cell growth and inhibited migration and invasion at considerably low concentrations as a single agent. No synergistic effect was detected when combining with paclitaxel, gemcitabine or doxorubicin. These results suggest that this compound could be a potentially useful drug in the treatment of AGS.
Collapse
Affiliation(s)
- Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain; Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Institute of Health Carlos III, Madrid, Spain.
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | | | - Victoria Heredia-Soto
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Institute of Health Carlos III, Madrid, Spain; Translational Oncology Research Laboratory, IdiPAZ, Madrid, Spain
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | | | - Maria Miguel
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Jose Juan Pozo-Kreilinger
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain; Department of Pathology, La Paz University Hospital (HULP), Madrid, Spain
| | - Alberto Berjon
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain; Department of Pathology, La Paz University Hospital (HULP), Madrid, Spain
| | | | - Jaime Feliu
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Institute of Health Carlos III, Madrid, Spain; Translational Oncology Research Laboratory, IdiPAZ, Madrid, Spain; Department of Medical Oncology, HULP, Madrid, Spain; Cátedra UAM-ANGEM, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Andres Redondo
- Translational Oncology Research Laboratory, IdiPAZ, Madrid, Spain; Department of Medical Oncology, HULP, Madrid, Spain; Cátedra UAM-ANGEM, School of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Akrida I, Mulita F, Plachouri KM, Benetatos N, Maroulis I, Papadaki H. Epithelial to mesenchymal transition (EMT) in metaplastic breast cancer and phyllodes breast tumors. Med Oncol 2023; 41:20. [PMID: 38104042 DOI: 10.1007/s12032-023-02259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Epithelial-mesenchymal transition (EMT), a transdifferentiation program whereby epithelial cells acquire mesenchymal phenotype, is essential during embryonic development. EMT has also been implicated in cancer progression by conferring migratory and metastatic potential, as well as cell plasticity and stem cell like traits, to cancer cells. Metaplastic breast carcinoma (MBC) is a rare aggressive type of breast cancer characterized by the presence of heterologous elements, typically by the existence of epithelial and mesenchymal components. Phyllodes tumors (PTs) are uncommon fibroepithelial neoplasms consisting of epithelial and mesenchymal elements. Although various hypotheses have been proposed on the pathogenesis of these biphasic tumors, there is growing evidence supporting the theory that PTs and MBC could both correlate with cancer related EMT. This review summarizes the existing literature on the emerging role of EMT in the pathogenesis of MBC and PTs. Both malignant PTs and MBC are characterized by poor prognosis. Therefore, several anti-EMT targeting strategies such as blocking upstream signaling pathways, targeting the molecular drivers of EMT and targeting mesenchymal cells and the extracellular matrix, could potentially represent a promising therapeutic approach for patients suffering from these aggressive neoplasms.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Francesk Mulita
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | | | - Nikolaos Benetatos
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | - Ioannis Maroulis
- Department of General Surgery, University General Hospital of Patras, Rion, Greece
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
4
|
Tzeng YDT, Hsiao JH, Tseng LM, Hou MF, Li CJ. Breast cancer organoids derived from patients: A platform for tailored drug screening. Biochem Pharmacol 2023; 217:115803. [PMID: 37709150 DOI: 10.1016/j.bcp.2023.115803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer stands as the most prevalent and heterogeneous malignancy affecting women globally, posing a substantial health concern. Enhanced comprehension of tumor pathology and the development of novel therapeutics are pivotal for advancing breast cancer treatment. Contemporary breast cancer investigation heavily leans on in vivo models and conventional cell culture techniques. Nonetheless, these approaches often encounter high failure rates in clinical trials due to species disparities and tissue structure variations. To address this, three-dimensional cultivation of organoids, resembling organ-like structures, has emerged as a promising alternative. Organoids represent innovative in vitro models that mirror in vivo tissue microenvironments. They retain the original tumor's diversity and facilitate the expansion of tumor samples from diverse origins, facilitating the representation of varying tumor stages. Optimized breast cancer organoid models, under precise culture conditions, offer benefits including convenient sample acquisition, abbreviated cultivation durations, and genetic stability. These attributes ensure a faithful replication of in vivo traits of breast cancer cells. As intricate cellular entities boasting spatial arrangements, breast cancer organoid models harbor substantial potential in precision medicine, organ transplantation, modeling intricate diseases, gene therapy, and drug innovation. This review delivers an overview of organoid culture techniques and outlines future prospects for organoid modeling.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
5
|
Hossain F, Ucar DA, Monticone G, Ran Y, Majumder S, Larter K, Luu H, Wyczechowska D, Heidari S, Xu K, Shanthalingam S, Matossian M, Xi Y, Burow M, Collins-Burow B, Del Valle L, Hicks C, Zabaleta J, Golde T, Osborne B, Miele L. Sulindac sulfide as a non-immune suppressive γ-secretase modulator to target triple-negative breast cancer. Front Immunol 2023; 14:1244159. [PMID: 37901240 PMCID: PMC10612326 DOI: 10.3389/fimmu.2023.1244159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of clinically aggressive tumors with high risk of recurrence and metastasis. Current pharmacological treatment options remain largely limited to chemotherapy. Despite promising results, the efficacy of immunotherapy and chemo-immunotherapy in TNBC remains limited. There is strong evidence supporting the involvement of Notch signaling in TNBC progression. Expression of Notch1 and its ligand Jagged1 correlate with poor prognosis. Notch inhibitors, including g-secretase inhibitors (GSIs), are quite effective in preclinical models of TNBC. However, the success of GSIs in clinical trials has been limited by their intestinal toxicity and potential for adverse immunological effects, since Notch plays key roles in T-cell activation, including CD8 T-cells in tumors. Our overarching goal is to replace GSIs with agents that lack their systemic toxicity and ideally, do not affect tumor immunity. We identified sulindac sulfide (SS), the active metabolite of FDA-approved NSAID sulindac, as a potential candidate to replace GSIs. Methods We investigated the pharmacological and immunotherapeutic properties of SS in TNBC models in vitro, ex-vivo and in vivo. Results We confirmed that SS, a known γ-secretase modulator (GSM), inhibits Notch1 cleavage in TNBC cells. SS significantly inhibited mammosphere growth in all human and murine TNBC models tested. In a transplantable mouse TNBC tumor model (C0321), SS had remarkable single-agent anti-tumor activity and eliminated Notch1 protein expression in tumors. Importantly, SS did not inhibit Notch cleavage in T- cells, and the anti-tumor effects of SS were significantly enhanced when combined with a-PD1 immunotherapy in our TNBC organoids and in vivo. Discussion Our data support further investigation of SS for the treatment of TNBC, in conjunction with chemo- or -chemo-immunotherapy. Repurposing an FDA-approved, safe agent for the treatment of TNBC may be a cost-effective, rapidly deployable therapeutic option for a patient population in need of more effective therapies.
Collapse
Affiliation(s)
- Fokhrul Hossain
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Deniz A. Ucar
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Giulia Monticone
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Yong Ran
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Kristina Larter
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Hanh Luu
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Dorota Wyczechowska
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Soroor Heidari
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Keli Xu
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Sudarvili Shanthalingam
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | | | - Yaguang Xi
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Matthew Burow
- School of Medicine, Tulane University, New Orleans, LA, United States
| | | | - Luis Del Valle
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
- Department of Pathology, Louisiana State University Health Sciences Center - New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| | - Jovanny Zabaleta
- Department of Interdisciplinary Oncology, LSUHSC-NO, New Orleans, LA, United States
| | - Todd Golde
- Department of Pharmacological and Chemical Biology, Emory University, Atlanta, GA, United States
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans (LSUHSC-NO), New Orleans, LA, United States
| |
Collapse
|
6
|
Lyu H, Hou D, Liu H, Ruan S, Tan C, Wu J, Hicks C, Liu B. HER3 targeting augments the efficacy of panobinostat in claudin-low triple-negative breast cancer cells. NPJ Precis Oncol 2023; 7:72. [PMID: 37537339 PMCID: PMC10400567 DOI: 10.1038/s41698-023-00422-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
Patients with triple-negative breast cancer (TNBC) have a poor prognosis and high relapse rate due to limited therapeutic options. This study was conducted to determine the mechanisms of action of panobinostat, a pan-inhibitor of histone deacetylase (HDAC) and FDA-approved medication for multiple myeloma, in TNBC and to provide a rationale for effective drug combinations against this aggressive disease. RNA sequencing analyses of the claudin-low (CL) TNBC (MDA-MB-231) cells untreated or treated with panobinostat were performed to identify the differentially expressed genes. Adaptive alterations in gene expression were analyzed and validated in additional CL TNBC cells. Tumor xenograft models were used to test the in vivo antitumor activity of panobinostat alone or its combinations with gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). Panobinostat potently inhibited proliferation and induced apoptosis in all TNBC cells tested. However, in CL TNBC cells, this HDAC inhibitor markedly enhanced expression of HER3, which interacted with EGFR to activate both receptors and Akt signaling pathways. Combinations of panobinostat and gefitinib synergistically suppressed CL TNBC cell proliferation and promoted apoptosis in vitro and in vivo. Upregulation of HER3 compromises the efficacy of panobinostat in CL TNBC. Inactivation of HER3 combined with panobinostat represents a practical approach to combat CL TNBC.
Collapse
Affiliation(s)
- Hui Lyu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
| | - Defu Hou
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Hao Liu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Sanbao Ruan
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Congcong Tan
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Jiande Wu
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Chindo Hicks
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA
| | - Bolin Liu
- Departments of Interdisciplinary Oncology, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
- Departments of Genetics, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University (LSU) Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
7
|
Cao C, Lu X, Guo X, Zhao H, Gao Y. Patient-derived models: Promising tools for accelerating the clinical translation of breast cancer research findings. Exp Cell Res 2023; 425:113538. [PMID: 36871856 DOI: 10.1016/j.yexcr.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Breast cancer has become the highest incidence of cancer in women. It was extensively and deeply studied by biologists and medical workers worldwide. However, the meaningful results in lab researches cannot be realized in clinical, and a part of new drugs in clinical experiments do not obtain as good results as the preclinical researches. It is urgently that promote a kind of breast cancer research models that can get study results closer to the physiological condition of the human body. Patient-derived models (PDMs) originating from clinical tumor, contain primary elements of tumor and maintain key clinical features of tumor. So they are promising research models to facilitate laboratory researches translate to clinical application, and predict the treatment outcome of patients. In this review, we summarize the establishment of PDMs of breast cancer, reviewed the application of PDMs in clinical translational researches and personalized precision medicine with breast cancer as an example, to improve the understanding of PDMs among researchers and clinician, facilitate them to use PDMs on a large scale of breast cancer researches and promote the clinical translation of laboratory research and new drug development.
Collapse
Affiliation(s)
- Changqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China; State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Xiyan Lu
- Department of Outpatient, The Second Affiliated Hospital of Air Force Medical University, China
| | - Xinyan Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China.
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China.
| |
Collapse
|
8
|
Thomas HR, Hu B, Boyraz B, Johnson A, Bossuyt VI, Spring L, Jimenez RB. Metaplastic breast cancer: A review. Crit Rev Oncol Hematol 2023; 182:103924. [PMID: 36696934 DOI: 10.1016/j.critrevonc.2023.103924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Metaplastic breast cancer (MpBC) is an uncommon aggressive malignancy that is associated with a poor prognosis. Due to its rarity, the relationships between the clinical and pathological features of MpBC, treatment approach, and clinical outcomes remain underexplored. In the following review article, we synthesize the existing data on the clinical, pathological and genomic features, management, and outcomes of MpBC. We also identify potential targets for future clinical trials.
Collapse
Affiliation(s)
- Horatio R Thomas
- Department of Radiation Oncology, University of California, San Francisco, United States.
| | - Bonnie Hu
- Department of Radiation Oncology, Massachusetts General Hospital, United States
| | - Baris Boyraz
- Department of Pathology, Massachusetts General Hospital, United States
| | - Andrew Johnson
- Department of Radiation Oncology, Massachusetts General Hospital, United States
| | - Veerle I Bossuyt
- Department of Pathology, Massachusetts General Hospital, United States
| | - Laura Spring
- Department of Medicine, Division of Medical Oncology, Massachusetts General Hospital, United States
| | - Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, United States
| |
Collapse
|
9
|
Cromwell EF, Sirenko O, Nikolov E, Hammer M, Brock CK, Matossian MD, Alzoubi MS, Collins-Burow BM, Burow ME. Multifunctional profiling of triple-negative breast cancer patient-derived tumoroids for disease modeling. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:191-200. [PMID: 35124274 DOI: 10.1016/j.slasd.2022.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
3D cell models derived from patient tumors are highly translational tools that can recapitulate the complex genetic and molecular compositions of solid cancers and accelerate identification of drug targets and drug testing. However, the complexity of performing assays with such models remains a hurdle for their wider adoption. In the present study, we describe methods for processing and multi-functional profiling of tumoroid samples to test compound effects using a novel flowchip system in combination with high content imaging and metabolite analysis. Tumoroids were formed from primary cells isolated from a patient-derived tumor explant, TU-BcX-4IC, that represents metaplastic breast cancer with a triple-negative breast cancer subtype. Assays were performed in a microfluidics-based device (Pu⋅MA System) that allows automated exchange of media and treatments of tumoroids in a tissue culture incubator environment. Multi-functional assay profiling was performed on tumoroids treated with anti-cancer drugs. High-content imaging was used to evaluate drug effects on cell viability and expression of E-cadherin and CD44. Lactate secretion was used to measure tumoroid metabolism as a function of time and drug concentration. Observed responses included loss of cell viability, decrease in E-cadherin expression, and increase of lactate production. Importantly, the tumoroids were sensitive to romidepsin and trametinib, while showed significantly reduced sensitivity to paclitaxel and cytarabine, consistent with the primary tumor response. These methods for multi-parametric profiling of drug effects in patient-derived tumoroids provide an in depth understanding of drug sensitivity of individual tumor types, with important implications for the future development of personalized medicine.
Collapse
|
10
|
Nowak E, Bednarek I. Aspects of the Epigenetic Regulation of EMT Related to Cancer Metastasis. Cells 2021; 10:3435. [PMID: 34943943 PMCID: PMC8700111 DOI: 10.3390/cells10123435] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) occurs during the pathological process associated with tumor progression and is considered to influence and promote the metastatic cascade. Characterized by loss of cell adhesion and apex base polarity, EMT enhances cell motility and metastasis. The key markers of the epithelial to mesenchymal transition are proteins characteristic of the epithelial phenotype, e.g., E-cadherin, cytokeratins, occludin, or desmoplakin, the concentration and activity of which are reduced during this process. On the other hand, as a result of acquiring the characteristics of mesenchymal cells, an increased amount of N-cadherin, vimentin, fibronectin, or vitronectin is observed. Importantly, epithelial cells undergo partial EMT where some of the cells show both epithelial and mesenchymal characteristics. The significant influence of epigenetic regulatory mechanisms is observed in the gene expression involved in EMT. Among the epigenetic modifications accompanying incorrect genetic reprogramming in cancer are changes in the level of DNA methylation within the CpG islands and posttranslational covalent changes of histone proteins. All observed modifications, which are stable but reversible changes, affect the level of gene expression leading to the development and progression of the disease, and consequently affect the uncontrolled growth of the population of cancer cells.
Collapse
Affiliation(s)
- Ewa Nowak
- Department of Biotechnology and Genetic Engineering, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
| | | |
Collapse
|
11
|
Matossian MD, Elliott S, Van Hoang T, Burks HE, Wright MK, Alzoubi MS, Yan T, Chang T, Wathieu H, Windsor GO, Hartono AB, Lee S, Zuercher WJ, Drewry DH, Wells C, Kapadia N, Buechlein A, Fang F, Nephew KP, Collins-Burow BM, Burow ME. NEK5 activity regulates the mesenchymal and migratory phenotype in breast cancer cells. Breast Cancer Res Treat 2021; 189:49-61. [PMID: 34196902 DOI: 10.1007/s10549-021-06295-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer remains a prominent global disease affecting women worldwide despite the emergence of novel therapeutic regimens. Metastasis is responsible for most cancer-related deaths, and acquisition of a mesenchymal and migratory cancer cell phenotypes contributes to this devastating disease. The utilization of kinase targets in drug discovery have revolutionized the field of cancer research but despite impressive advancements in kinase-targeting drugs, a large portion of the human kinome remains understudied in cancer. NEK5, a member of the Never-in-mitosis kinase family, is an example of such an understudied kinase. Here, we characterized the function of NEK5 in breast cancer. METHODS Stably overexpressing NEK5 cell lines (MCF7) and shRNA knockdown cell lines (MDA-MB-231, TU-BcX-4IC) were utilized. Cell morphology changes were evaluated using immunofluorescence and quantification of cytoskeletal components. Cell proliferation was assessed by Ki-67 staining and transwell migration assays tested cell migration capabilities. In vivo experiments with murine models were necessary to demonstrate NEK5 function in breast cancer tumor growth and metastasis. RESULTS NEK5 activation altered breast cancer cell morphology and promoted cell migration independent of effects on cell proliferation. NEK5 overexpression or knockdown does not alter tumor growth kinetics but promotes or suppresses metastatic potential in a cell type-specific manner, respectively. CONCLUSION While NEK5 activity modulated cytoskeletal changes and cell motility, NEK5 activity affected cell seeding capabilities but not metastatic colonization or proliferation in vivo. Here we characterized NEK5 function in breast cancer systems and we implicate NEK5 in regulating specific steps of metastatic progression.
Collapse
Affiliation(s)
| | - Steven Elliott
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - T Van Hoang
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hope E Burks
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Maryl K Wright
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Madlin S Alzoubi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Thomas Yan
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Tiffany Chang
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Henri Wathieu
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Gabrielle O Windsor
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alifiani Bo Hartono
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sean Lee
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nirav Kapadia
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Fang Fang
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Kenneth P Nephew
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, USA
| | | | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
12
|
Nguyen K, Rivera A, Alzoubi M, Wathieu H, Dong S, Yousefi H, Matossian M, Alahari S, Drewry D, Burow M, Collins-Burow B. Evaluation of liver kinase B1 downstream signaling expression in various breast cancers and relapse free survival after systemic chemotherapy treatment. Oncotarget 2021; 12:1110-1115. [PMID: 34084284 PMCID: PMC8169068 DOI: 10.18632/oncotarget.27929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
LKB1-signaling has prominent roles in cancer development and metastasis. This report evaluates LKB1-signaling pathway gene expression associations with patient survival in overall breast cancer, specific subtypes, as well as pre- and post-chemotherapy. Subtypes analyzed were based on intrinsic molecular subtyping and traditional biomarker classifications. Intrinsic molecular subtypes included were Luminal-A, Luminal-B, HER2-enriched, and Basal-like. The biomarker subtypes assessed were Estrogen-Receptor Positive (ER+) and Negative (ER-), Wild-Type TP53 (WT-TP53) & Mutant-TP53, and Triple-Negative Breast Cancer (TNBC). Additionally, comparisons were made between these subtypes and breast cancer overall, and analyses between LKB1 signaling to patient survival before and after chemotherapy were made. We used the Kaplan-Meier Online Tool (KM Plotter) to correlate the relationship between mRNA expression of known LKB1 scaffolding proteins (CAB39 and LYK5), and downstream signaling targets (AMPK, MARK1, MARK2, MARK3, MARK4, NUAK1, NUAK2, PAK1, SIK1, SIK2, BRSK1, BRSK2, SNRK, and QSK), and patient survival across each subtype and treatment group. Our findings provide evidence that LKB1-signaling is associated with improved survival in overall breast cancer. Stratification into breast cancer subtypes show a more complicated relationship; NUAK2, for example, is correlated with improved survival in ER- but is worse in ER+ breast cancer. In evaluating the association of LKB1-signaling pathway expression with relapse free survival of varying breast cancer tumors exposed to chemotherapy or treatment-naive tumors, our data provides baseline knowledge for understanding the pathway dynamics that affect survival and therefore are linked to pathology. This establishes a foundation for studying LKB1 targets with the goal of identifying druggable targets.
Collapse
Affiliation(s)
- Khoa Nguyen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,These authors contributed equally to this work & are co-first authors
| | - Andrew Rivera
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.,These authors contributed equally to this work & are co-first authors
| | - Madlin Alzoubi
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Henri Wathieu
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shengli Dong
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, USA
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, USA
| | - Margarite Matossian
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Suresh Alahari
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, LA, USA
| | - David Drewry
- UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Matthew Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | | |
Collapse
|
13
|
Correction: Evaluation of deacetylase inhibition in metaplastic breast carcinoma using multiple derivations of preclinical models of a new patient-derived tumor. PLoS One 2021; 16:e0251106. [PMID: 33914835 PMCID: PMC8084180 DOI: 10.1371/journal.pone.0251106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0226464.].
Collapse
|
14
|
Gurrala R, Byrne CE, Brown LM, Tiongco RFP, Matossian MD, Savoie JJ, Collins-Burow BM, Burow ME, Martin EC, Lau FH. Quantifying Breast Cancer-Driven Fiber Alignment and Collagen Deposition in Primary Human Breast Tissue. Front Bioeng Biotechnol 2021; 9:618448. [PMID: 33791282 PMCID: PMC8006399 DOI: 10.3389/fbioe.2021.618448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Solid tumor progression is significantly influenced by interactions between cancer cells and the surrounding extracellular matrix (ECM). Specifically, the cancer cell-driven changes to ECM fiber alignment and collagen deposition impact tumor growth and metastasis. Current methods of quantifying these processes are incomplete, require simple or artificial matrixes, rely on uncommon imaging techniques, preclude the use of biological and technical replicates, require destruction of the tissue, or are prone to segmentation errors. We present a set of methodological solutions to these shortcomings that were developed to quantify these processes in cultured, ex vivo human breast tissue under the influence of breast cancer cells and allow for the study of ECM in primary breast tumors. Herein, we describe a method of quantifying fiber alignment that can analyze complex native ECM from scanning electron micrographs that does not preclude the use of replicates and a high-throughput mechanism of quantifying collagen content that is non-destructive. The use of these methods accurately recapitulated cancer cell-driven changes in fiber alignment and collagen deposition observed by visual inspection. Additionally, these methods successfully identified increased fiber alignment in primary human breast tumors when compared to human breast tissue and increased collagen deposition in lobular breast cancer when compared to ductal breast cancer. The successful quantification of fiber alignment and collagen deposition using these methods encourages their use for future studies of ECM dysregulation in human solid tumors.
Collapse
Affiliation(s)
- Rakesh Gurrala
- Department of Surgery, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,School of Medicine, Tulane University, New Orleans, LA, United States
| | - C Ethan Byrne
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Loren M Brown
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Rafael Felix P Tiongco
- Department of Surgery, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States.,School of Medicine, Tulane University, New Orleans, LA, United States
| | - Margarite D Matossian
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA, United States.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jonathan J Savoie
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Bridgette M Collins-Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Matthew E Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA, United States.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, United States
| |
Collapse
|