1
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
2
|
Chen L, Zhao X, Liu X, Ouyang Y, Xu C, Shi Y. Development of small molecule drugs targeting immune checkpoints. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0034. [PMID: 38727005 PMCID: PMC11131045 DOI: 10.20892/j.issn.2095-3941.2024.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) are used to relieve and refuel anti-tumor immunity by blocking the interaction, transcription, and translation of co-inhibitory immune checkpoints or degrading co-inhibitory immune checkpoints. Thousands of small molecule drugs or biological materials, especially antibody-based ICIs, are actively being studied and antibodies are currently widely used. Limitations, such as anti-tumor efficacy, poor membrane permeability, and unneglected tolerance issues of antibody-based ICIs, remain evident but are thought to be overcome by small molecule drugs. Recent structural studies have broadened the scope of candidate immune checkpoint molecules, as well as innovative chemical inhibitors. By way of comparison, small molecule drug-based ICIs represent superior oral bioavailability and favorable pharmacokinetic features. Several ongoing clinical trials are exploring the synergetic effect of ICIs and other therapeutic strategies based on multiple ICI functions, including immune regulation, anti-angiogenesis, and cell cycle regulation. In this review we summarized the current progression of small molecule ICIs and the mechanism underlying immune checkpoint proteins, which will lay the foundation for further exploration.
Collapse
Affiliation(s)
- Luoyi Chen
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xinchen Zhao
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaowei Liu
- Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujie Ouyang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ying Shi
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
3
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
4
|
Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel) 2024; 16:435. [PMID: 38275876 PMCID: PMC10814352 DOI: 10.3390/cancers16020435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
5
|
Shan W, Chen L, Xu H, Zhong Q, Xu Y, Yao H, Lin K, Li X. GcForest-based compound-protein interaction prediction model and its application in discovering small-molecule drugs targeting CD47. Front Chem 2023; 11:1292869. [PMID: 37927570 PMCID: PMC10623438 DOI: 10.3389/fchem.2023.1292869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Identifying compound-protein interaction plays a vital role in drug discovery. Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL) algorithms, are playing increasingly important roles in compound-protein interaction (CPI) prediction. However, ML relies on learning from large sample data. And the CPI for specific target often has a small amount of data available. To overcome the dilemma, we propose a virtual screening model, in which word2vec is used as an embedding tool to generate low-dimensional vectors of SMILES of compounds and amino acid sequences of proteins, and the modified multi-grained cascade forest based gcForest is used as the classifier. This proposed method is capable of constructing a model from raw data, adjusting model complexity according to the scale of datasets, especially for small scale datasets, and is robust with few hyper-parameters and without over-fitting. We found that the proposed model is superior to other CPI prediction models and performs well on the constructed challenging dataset. We finally predicted 2 new inhibitors for clusters of differentiation 47(CD47) which has few known inhibitors. The IC50s of enzyme activities of these 2 new small molecular inhibitors targeting CD47-SIRPα interaction are 3.57 and 4.79 μM respectively. These results fully demonstrate the competence of this concise but efficient tool for CPI prediction.
Collapse
Affiliation(s)
- Wenying Shan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Lvqi Chen
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- National Engineering Laboratory for Biomass Chemical Utilization, Nanjing, China
| | - Qinghao Zhong
- School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yinqiu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hequan Yao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuanyi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Montero E, Isenberg JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era. Cancer Immunol Immunother 2023; 72:2879-2888. [PMID: 37217603 PMCID: PMC10412679 DOI: 10.1007/s00262-023-03465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The use of treatments, such as programmed death protein 1 (PD1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies, that loosen the natural checks upon immune cell activity to enhance cancer killing have shifted clinical practice and outcomes for the better. Accordingly, the number of antibodies and engineered proteins that interact with the ligand-receptor components of immune checkpoints continue to increase along with their use. It is tempting to view these molecular pathways simply from an immune inhibitory perspective. But this should be resisted. Checkpoint molecules can have other cardinal functions relevant to the development and use of blocking moieties. Cell receptor CD47 is an example of this. CD47 is found on the surface of all human cells. Within the checkpoint paradigm, non-immune cell CD47 signals through immune cell surface signal regulatory protein alpha (SIRPα) to limit the activity of the latter, the so-called trans signal. Even so, CD47 interacts with other cell surface and soluble molecules to regulate biogas and redox signaling, mitochondria and metabolism, self-renewal factors and multipotency, and blood flow. Further, the pedigree of checkpoint CD47 is more intricate than supposed. High-affinity interaction with soluble thrombospondin-1 (TSP1) and low-affinity interaction with same-cell SIRPα, the so-called cis signal, and non-SIRPα ectodomains on the cell membrane suggests that multiple immune checkpoints converge at and through CD47. Appreciation of this may provide latitude for pathway-specific targeting and intelligent therapeutic effect.
Collapse
Affiliation(s)
- Enrique Montero
- Department of Diabetes Immunology, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Dranchak PK, Oliphant E, Queme B, Lamy L, Wang Y, Huang R, Xia M, Tao D, Inglese J. In vivo quantitative high-throughput screening for drug discovery and comparative toxicology. Dis Model Mech 2023; 16:dmm049863. [PMID: 36786055 PMCID: PMC10067442 DOI: 10.1242/dmm.049863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Quantitative high-throughput screening (qHTS) pharmacologically evaluates chemical libraries for therapeutic uses, toxicological risk and, increasingly, for academic probe discovery. Phenotypic high-throughput screening assays interrogate molecular pathways, often relying on cell culture systems, historically less focused on multicellular organisms. Caenorhabditis elegans has served as a eukaryotic model organism for human biology by virtue of genetic conservation and experimental tractability. Here, a paradigm enabling C. elegans qHTS using 384-well microtiter plate laser-scanning cytometry is described, in which GFP-expressing organisms revealing phenotype-modifying structure-activity relationships guide subsequent life-stage and proteomic analyses, and Escherichia coli bacterial ghosts, a non-replicating nutrient source, allow compound exposures over two life cycles, mitigating bacterial overgrowth complications. We demonstrate the method with libraries of anti-infective agents, or substances of toxicological concern. Each was tested in seven-point titration to assess the feasibility of nematode-based in vivo qHTS, and examples of follow-up strategies were provided to study organism-based chemotype selectivity and subsequent network perturbations with a physiological impact. We anticipate that this qHTS approach will enable analysis of C. elegans orthologous phenotypes of human pathologies to facilitate drug library profiling for a range of therapeutic indications.
Collapse
Affiliation(s)
- Patricia K. Dranchak
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Erin Oliphant
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Bryan Queme
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Laurence Lamy
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yuhong Wang
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Ruili Huang
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Menghang Xia
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - James Inglese
- Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20817, USA
| |
Collapse
|
8
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
9
|
Chen M, Zhu Z, Wisniewski T, Zhang X, McLaren DG, Weinglass A, Saldanha SA. Label-free LC-MS based assay to characterize small molecule compound binding to cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:405-412. [PMID: 36064100 DOI: 10.1016/j.slasd.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Study of small molecule binding to live cells provides important information on the characterization of ligands pharmacologically. Here we developed and validated a label-free, liquid chromatography-mass spectrometry (LC-MS) based cell binding assay, using centrifugation to separate binders from non-binders. This assay was applied to various target classes, with particular emphasis on those for which protein-based binding assay can be difficult to achieve. In one example, to study a G protein coupled receptor (GPCR), we used one antagonist as probe and multiple other antagonists as competitor ligands. Binding of the probe was confirmed to be specific and saturable, reaching a fast equilibrium. Competition binding analysis by titration of five known ligands suggested a good correlation with their inhibition potency. In another example, this assay was applied to an ion channel target with its agonists, of which the determined binding affinity was consistent with functional assays. This versatile method allows quantitative characterization of ligand binding to cell surface expressed targets in a physiologically relevant environment.
Collapse
|
10
|
Zhu J, Cai C, Li J, Xiao J, Duan X. CD47-SIRPα axis in cancer therapy: Precise delivery of CD47-targeted therapeutics and design of anti-phagocytic drug delivery systems. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
11
|
Wu M, Shi Y, Zhu L, Chen L, Zhao X, Xu C. Macrophages in Glioblastoma Development and Therapy: A Double-Edged Sword. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081225. [PMID: 36013403 PMCID: PMC9409650 DOI: 10.3390/life12081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is one of the leading lethal tumors, featuring aggressive malignancy and poor outcome to current standard temozolomide (TMZ) or radio-based therapy. Developing immunotherapies, especially immune checkpoint inhibitors, have improved patient outcomes in other solid tumors but remain fatigued in GBM patients. Emerging evidence has shown that GBM-associated macrophages (GAMs), comprising brain-resident microglia and bone marrow-derived macrophages, act critically in boosting tumor progression, altering drug resistance, and establishing an immunosuppressive environment. Based on its crucial role, evaluations of the safety and efficacy of GAM-targeted therapy are ongoing, with promising (pre)clinical evidence updated. In this review, we summarized updated literature related to GAM nature, the interplay between GAMs and GBM cells, and GAM-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Luyi Zhu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Luoyi Chen
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xinchen Zhao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
12
|
Behrens LM, van den Berg TK, van Egmond M. Targeting the CD47-SIRPα Innate Immune Checkpoint to Potentiate Antibody Therapy in Cancer by Neutrophils. Cancers (Basel) 2022; 14:cancers14143366. [PMID: 35884427 PMCID: PMC9319280 DOI: 10.3390/cancers14143366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Immunotherapy aims to engage various immune cells in the elimination of cancer cells. Neutrophils are the most abundant leukocytes in the circulation and have unique mechanisms by which they can kill cancer cells opsonized by antibodies. However, neutrophil effector functions are limited by the inhibitory receptor SIRPα, when it interacts with CD47. The CD47 protein is expressed on all cells in the body and acts as a ‘don’t eat me’ signal to prevent tissue damage. Cancer cells can express high levels of CD47 to circumvent tumor elimination. Thus, blocking the interaction between CD47 and SIRPα may enhance anti-tumor effects by neutrophils in the presence of tumor-targeting monoclonal antibodies. In this review, we discuss CD47-SIRPα as an innate immune checkpoint on neutrophils and explore the preliminary results of clinical trials using CD47-SIRPα blocking agents. Abstract In the past 25 years, a considerable number of therapeutic monoclonal antibodies (mAb) against a variety of tumor-associated antigens (TAA) have become available for the targeted treatment of hematologic and solid cancers. Such antibodies opsonize cancer cells and can trigger cytotoxic responses mediated by Fc-receptor expressing immune cells in the tumor microenvironment (TME). Although frequently ignored, neutrophils, which are abundantly present in the circulation and many cancers, have demonstrated to constitute bona fide effector cells for antibody-mediated tumor elimination in vivo. It has now also been established that neutrophils exert a unique mechanism of cytotoxicity towards antibody-opsonized tumor cells, known as trogoptosis, which involves Fc-receptor (FcR)-mediated trogocytosis of cancer cell plasma membrane leading to a lytic/necrotic type of cell death. However, neutrophils prominently express the myeloid inhibitory receptor SIRPα, which upon interaction with the ‘don’t eat me’ signal CD47 on cancer cells, limits cytotoxicity, forming a mechanism of resistance towards anti-cancer antibody therapeutics. In fact, tumor cells often overexpress CD47, thereby even more strongly restricting neutrophil-mediated tumor killing. Blocking the CD47-SIRPα interaction may therefore potentiate neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) towards cancer cells, and various inhibitors of the CD47-SIRPα axis are now in clinical studies. Here, we review the role of neutrophils in antibody therapy in cancer and their regulation by the CD47-SIRPα innate immune checkpoint. Moreover, initial results of CD47-SIRPα blockade in clinical trials are discussed.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology Program, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Timo K. van den Berg
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Byondis B.V., 6545 CM Nijmegen, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.K.v.d.B.); (M.v.E.)
- Cancer Center Amsterdam, Cancer Biology and Immunology Program, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology Program, 1081 HV Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
13
|
Gondois-Rey F, Miller T, Laletin V, Morelli X, Collette Y, Nunès J, Olive D. CD47-SIRPα Controls ADCC Killing of Primary T Cells by PMN Through a Combination of Trogocytosis and NADPH Oxidase Activation. Front Immunol 2022; 13:899068. [PMID: 35795660 PMCID: PMC9252436 DOI: 10.3389/fimmu.2022.899068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Immunotherapies targeting the “don’t eat me” myeloid checkpoint constituted by CD47 SIRPα interaction have promising clinical potential but are limited by toxicities associated with the destruction of non-tumor cells. These dose-limiting toxicities demonstrate the need to highlight the mechanisms of anti–CD47-SIRPα therapy effects on non-tumor CD47-bearing cells. Given the increased incidence of lymphopenia in patients receiving anti-CD47 antibodies and the strong ADCC (antibody-dependent cellular cytotoxicity) effector function of polymorphonuclear cells (PMNs), we investigated the behavior of primary PMNs cocultured with primary T cells in the presence of anti-CD47 mAbs. PMNs killed T cells in a CD47-mAb–dependent manner and at a remarkably potent PMN to T cell ratio of 1:1. The observed cytotoxicity was produced by a novel combination of both trogocytosis and a strong respiratory burst induced by classical ADCC and CD47-SIRPα checkpoint blockade. The complex effect of the CD47 blocking mAb could be recapitulated by combining its individual mechanistic elements: ADCC, SIRPα blockade, and ROS induction. Although previous studies had concluded that disruption of SIRPα signaling in PMNs was limited to trogocytosis-specific cytotoxicity, our results suggest that SIRPα also tightly controls activation of NADPH oxidase, a function demonstrated during differentiation of immature PMNs but not so far in mature PMNs. Together, our results highlight the need to integrate PMNs in the development of molecules targeting the CD47-SIRPα immune checkpoint and to design agents able to enhance myeloid cell function while limiting adverse effects on healthy cells able to participate in the anti-tumor immune response.
Collapse
Affiliation(s)
- Françoise Gondois-Rey
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
- *Correspondence: Françoise Gondois-Rey, ; Thomas W. Miller, ; Daniel Olive,
| | - Thomas Miller
- Integrated Chemical and Structural Biology Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
- *Correspondence: Françoise Gondois-Rey, ; Thomas W. Miller, ; Daniel Olive,
| | - Vladimir Laletin
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
| | - Xavier Morelli
- Integrated Chemical and Structural Biology Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
| | - Yves Collette
- Integrated Chemical and Structural Biology Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
| | - Jacques Nunès
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
| | - Daniel Olive
- Immunity and Cancer Team, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix Marseille University UM105, Marseille, France
- *Correspondence: Françoise Gondois-Rey, ; Thomas W. Miller, ; Daniel Olive,
| |
Collapse
|
14
|
Wang H, Wen C, Chen S, Li W, Qin Q, He L, Wang F, Chen J, Ye W, Li W, Peng J, Yang X, Liu H. ROS/JNK/C-Jun Pathway is Involved in Chaetocin Induced Colorectal Cancer Cells Apoptosis and Macrophage Phagocytosis Enhancement. Front Pharmacol 2021; 12:729367. [PMID: 34776955 PMCID: PMC8578663 DOI: 10.3389/fphar.2021.729367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
There is an urgent need for novel agents for colorectal cancer (CRC) due to the increasing number of cases and drug-resistance related to current treatments. In this study, we aim to uncover the potential of chaetocin, a natural product, as a chemotherapeutic for CRC treatment. We showed that, regardless of 5-FU-resistance, chaetocin induced proliferation inhibition by causing G2/M phase arrest and caspase-dependent apoptosis in CRC cells. Mechanically, our results indicated that chaetocin could induce reactive oxygen species (ROS) accumulation and activate c-Jun N-terminal kinase (JNK)/c-Jun pathway in CRC cells. This was confirmed by which the JNK inhibitor SP600125 partially rescued CRC cells from chaetocin induced apoptosis and the ROS scavenger N-acetyl-L-cysteine (NAC) reversed both the chaetocin induced apoptosis and the JNK/c-Jun pathway activation. Additionally, this study indicated that chaetocin could down-regulate the expression of CD47 at both mRNA and protein levels, and enhance macrophages phagocytosis of CRC cells. Chaetocin also inhibited tumor growth in CRC xenograft models. In all, our study reveals that chaetocin induces CRC cell apoptosis, irrelevant to 5-FU sensitivity, by causing ROS accumulation and activating JNK/c-Jun, and enhances macrophages phagocytosis, which suggests chaetocin as a candidate for CRC chemotherapy.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Obstetrics and Gynecology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, China
| | - Weiqian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiyuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibiao Ye
- Department of Pathology, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, China
| | - Junsheng Peng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangling Yang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Huang B, Bai Z, Ye X, Zhou C, Xie X, Zhong Y, Lin K, Ma L. Structural analysis and binding sites of inhibitors targeting the CD47/SIRPα interaction in anticancer therapy. Comput Struct Biotechnol J 2021; 19:5494-5503. [PMID: 34712395 PMCID: PMC8517548 DOI: 10.1016/j.csbj.2021.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/18/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022] Open
Abstract
Cluster of differentiation 47 (CD47)/signal regulatory protein alpha (SIRPα) is a negative innate immune checkpoint signaling pathway that restrains immunosurveillance and immune clearance, and thus has aroused wide interest in cancer immunotherapy. Blockade of the CD47/SIRPα signaling pathway shows remarkable antitumor effects in clinical trials. Currently, all inhibitors targeting CD47/SIRPα in clinical trials are biomacromolecules. The poor permeability and undesirable oral bioavailability of biomacromolecules have caused researchers to develop small-molecule CD47/SIRPα pathway inhibitors. This review will summarize the recent advances in CD47/SIRPα interactions, including crystal structures, peptides and small molecule inhibitors. In particular, we have employed computer-aided drug discovery (CADD) approaches to analyze all the published crystal structures and docking results of small molecule inhibitors of CD47/SIRPα, providing insight into the key interaction information to facilitate future development of small molecule CD47/SIRPα inhibitors.
Collapse
Affiliation(s)
- Bo Huang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu 210009, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Chenyu Zhou
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Xiaolin Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Yuejiao Zhong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu 210009, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| | - Lingman Ma
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu 211198, China
| |
Collapse
|
16
|
Advances in culture methods for acute myeloid leukemia research. Oncoscience 2021; 8:82-90. [PMID: 34368398 PMCID: PMC8336936 DOI: 10.18632/oncoscience.540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Conventional suspension cultures have been used in Acute Myeloid Leukemia (AML) research to study its biology as well as to screen any drug molecules, since its inception. Co-culture models of AML cells and other stromal cells as well as 3 dimensional (3D) culture models have gained much attention recently. These culture models try to recapitulate the tumour microenvironment and are found to be more suitable than suspension cultures. Though animal models are being used, they require more time, effort and facilities and hence, it is essential to develop cell culture models for high-throughput screening of drugs. Here, we discuss a new co-culture model developed by our research group involving acute myeloid leukemia (AML) cells and stimulated macrophages. Other studies on co-culture systems and relevance of 3D culture in leukemic research in understanding the pathology and treatment of leukemia are also reviewed.
Collapse
|
17
|
Coimbra JRM, Salvador JAR. A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opin Ther Pat 2021; 31:809-836. [PMID: 33896339 DOI: 10.1080/13543776.2021.1917549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Glutaminyl cyclase (QC) enzymes catalyze the post-translational processing of several substrates with N-terminal glutamine or glutamate to form pyroglutamate (pE) residue. In addition to physiological functions, emerging evidence demonstrates that human QCs play a part in pathological processes in diverse diseases such as Alzheimer's disease (AD), inflammatory and cancer diseases.Areas covered: In recent years, efforts to effectively develop QC small-molecule inhibitors have been made and different chemical classes have been disclosed. This review summarizes the patents/applications regarding QC inhibitors released from 2004 (first patent) to now. The patents are mostly described in terms of chemical structures, biochemical/pharmacological activities, and potential clinical applications.Expert opinion: For more than 15 years of research, the knowledge on the QC activity domain has considerably increased and therapeutic potential of QC inhibitors has been explored. An important number of studies and patents have been published to expand the use of QC inhibitors. QC enzymes are pharmacologically interesting targets to be used as an AD-modifying therapy, or for other QC-associated disorder. Distinct classes of chemical scaffolds and potential clinical uses have been claimed by various organizations. For the coming years, there is much to experience in the QC field.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Yu WB, Ye ZH, Chen X, Shi JJ, Lu JJ. The development of small-molecule inhibitors targeting CD47. Drug Discov Today 2020; 26:561-568. [PMID: 33197622 DOI: 10.1016/j.drudis.2020.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy has become an indispensable part of cancer treatment. A pivotal phagocytosis checkpoint, named cluster of differentiation 47 (CD47), which functions as 'don't eat me' signal to protect cells from phagocytosis upon interaction with signal regulatory protein alpha (SIRPα) on macrophages, has recently attracted much attention. Numerous antibodies targeting the CD47/SIRPα axis have shown encouraging efficacy in clinical trials. Meanwhile, studies on small-molecule inhibitors that interfere with CD47/SIRPα interaction or regulate CD47 expression are also in full swing. In this review, we summarize the small-molecule inhibitors interrupting the binding of CD47/SIRPα and regulating CD47 at the transcriptional, translational, and post-translational modification (PTM) levels. We provide perspectives and strategies for targeting the CD47/SIRPα phagocytosis checkpoint.
Collapse
Affiliation(s)
- Wei-Bang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zi-Han Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
19
|
Bosc N, Muller C, Hoffer L, Lagorce D, Bourg S, Derviaux C, Gourdel ME, Rain JC, Miller TW, Villoutreix BO, Miteva MA, Bonnet P, Morelli X, Sperandio O, Roche P. Fr-PPIChem: An Academic Compound Library Dedicated to Protein-Protein Interactions. ACS Chem Biol 2020; 15:1566-1574. [PMID: 32320205 PMCID: PMC7399473 DOI: 10.1021/acschembio.0c00179] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions (PPIs) mediate nearly every cellular process and represent attractive targets for modulating disease states but are challenging to target with small molecules. Despite this, several PPI inhibitors (iPPIs) have entered clinical trials, and a growing number of PPIs have become validated drug targets. However, high-throughput screening efforts still endure low hit rates mainly because of the use of unsuitable screening libraries. Here, we describe the collective effort of a French consortium to build, select, and store in plates a unique chemical library dedicated to the inhibition of PPIs. Using two independent predictive models and two updated databases of experimentally confirmed PPI inhibitors developed by members of the consortium, we built models based on different training sets, molecular descriptors, and machine learning methods. Independent statistical models were used to select putative PPI inhibitors from large commercial compound collections showing great complementarity. Medicinal chemistry filters were applied to remove undesirable structures from this set (such as PAINS, frequent hitters, and toxic compounds) and to improve drug likeness. The remaining compounds were subjected to a clustering procedure to reduce the final size of the library while maintaining its chemical diversity. In practice, the library showed a 46-fold activity rate enhancement when compared to a non-iPPI-enriched diversity library in high-throughput screening against the CD47-SIRPα PPI. The Fr-PPIChem library is plated in 384-well plates and will be distributed on demand to the scientific community as a powerful tool for discovering new chemical probes and early hits for the development of potential therapeutic drugs.
Collapse
Affiliation(s)
- Nicolas Bosc
- Inserm U973 MTi, 25 rue Hélène Brion 75013 Paris
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR3528, 28 rue du Dr Roux 75015 Paris
| | - Christophe Muller
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Laurent Hoffer
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| | - David Lagorce
- Université de Paris, INSERM US14, Plateforme Maladies Rares - Orphanet, 75014 Paris, France
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans. France
| | - Carine Derviaux
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Marie-Edith Gourdel
- Hybrigenics Services SAS, 1 rue Pierre Fontaine, 91000 Evry Courcouronnes, France
| | - Jean-Christophe Rain
- Hybrigenics Services SAS, 1 rue Pierre Fontaine, 91000 Evry Courcouronnes, France
| | - Thomas W. Miller
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
| | - Bruno O. Villoutreix
- Université de Lille, INSERM, Institut Pasteur de Lille, U1177 - Drugs and Molecules for living Systems, 59000 Lille, France
| | - Maria A. Miteva
- Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM – Univ. De Paris, Faculté de Pharmacie de Paris, 75006 Paris, France
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d’Orléans, UMR CNRS 7311, BP 6759, 45067 Orléans. France
| | - Xavier Morelli
- IPC Drug Discovery Platform, Institut Paoli-Calmettes, 232 Boulevard de Sainte-Marguerite, 13009, Marseille, France
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| | - Olivier Sperandio
- Inserm U973 MTi, 25 rue Hélène Brion 75013 Paris
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR3528, 28 rue du Dr Roux 75015 Paris
| | - Philippe Roche
- CRCM, CNRS, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, 13009 Marseille, France
| |
Collapse
|