1
|
Zinßmeister D, Leibovitch M, Natan E, Turjeman S, Koren O, Travisano M, Vortman Y, Baselga-Cervera B. Detecting life by behavior, the overlooked sensitivity of behavioral assays. Sci Rep 2024; 14:18904. [PMID: 39143360 PMCID: PMC11324786 DOI: 10.1038/s41598-024-69942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
Detecting life has driven research and exploration for centuries, but recent attempts to compile and generate a framework that summarizes life features, aimed to develop strategies for life detection missions beyond planet Earth, have disregarded a key life feature: behavior. Yet, some behaviors such as biomineralization or motility have occasionally been proposed as biosignatures to detect life. Here, we capitalize on a specific taxis' motility behavior, magnetotaxis, to experimentally provide insights in support of behavior as an unambiguous, sensitive biosignature, and magnetic forces as a prescreening option. Using a magnetotactic bacterial species, Magnetospirillum magneticum, we conducted a lab sensitivity experiment comparing PCR with the hanging drop behavioral assay, using a dilution series. The hanging drop behavioral assay visually shows the motility of MTB toward magnetic poles. Our findings reveal that the behavioral assay exhibits higher sensitivity in the detection of M. magneticum when compared to the established PCR protocol. While both methods present similar detection sensitivities at high concentrations, at ≥ 10-7 fold dilutions, the behavioral method proved more sensitive. The behavioral method can detect bacteria even when samples are diluted at 10-9. Comparable results were obtained with environmental samples from the Hula Valley. We propose behavioral cues as valuable biosignatures in the ongoing efforts of life detection in unexplored aquatic habitats on Earth and to stimulate and support discussions about how to detect extant life beyond Earth. Generic and robust behavioral assays can represent a methodological revolution.
Collapse
Affiliation(s)
- Daniela Zinßmeister
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Tel Hai, Israel
| | - Moshe Leibovitch
- Hula Research Center, Department of Biotechnology, Tel-Hai Academic College, Tel Hai, Israel
| | | | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
- The BioTechnology Institute, University of Minnesota, St Paul, MN, USA
| | - Yoni Vortman
- Hula Research Center, Department of Animal Sciences, Tel-Hai Academic College, Tel Hai, Israel
- MIGAL-Galilee Research Institute, 11016, Kiryat Shmona, Israel
| | - Beatriz Baselga-Cervera
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, USA.
- Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Pocock MJ, Adriaens T, Bertolino S, Eschen R, Essl F, Hulme PE, Jeschke JM, Roy HE, Teixeira H, de Groot M. Citizen science is a vital partnership for invasive alien species management and research. iScience 2024; 27:108623. [PMID: 38205243 PMCID: PMC10776933 DOI: 10.1016/j.isci.2023.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Invasive alien species (IAS) adversely impact biodiversity, ecosystem functions, and socio-economics. Citizen science can be an effective tool for IAS surveillance, management, and research, providing large datasets over wide spatial extents and long time periods, with public participants generating knowledge that supports action. We demonstrate how citizen science has contributed knowledge across the biological invasion process, especially for early detection and distribution mapping. However, we recommend that citizen science could be used more for assessing impacts and evaluating the success of IAS management. Citizen science does have limitations, and we explore solutions to two key challenges: ensuring data accuracy and dealing with uneven spatial coverage of potential recorders (which limits the dataset's "fit for purpose"). Greater co-development of citizen science with public stakeholders will help us better realize its potential across the biological invasion process and across ecosystems globally while meeting the needs of participants, local communities, scientists, and decision-makers.
Collapse
Affiliation(s)
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest Management and Conservation, Lincoln University, PO Box 84850, Christchurch, Lincoln 7648, New Zealand
| | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Helen E. Roy
- UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Heliana Teixeira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal
| | - Maarten de Groot
- Slovenian Forestry Institute, Večna pot 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Meinecke CD, Vos LD, Yilmaz N, Steenkamp ET, Wingfield MJ, Wingfield BD, Villari C. A LAMP Assay for Rapid Detection of the Pitch Canker Pathogen Fusarium circinatum. PLANT DISEASE 2023; 107:2916-2923. [PMID: 36867583 DOI: 10.1094/pdis-04-22-0972-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The pine pitch canker pathogen Fusarium circinatum is endemic in the southeastern United States and Central America and represents an invasive threat globally. This ecologically adaptable fungus readily infects all parts of its pine hosts, leading to widespread mortality of nursery seedlings and decline in the health and productivity of forest stands. Because trees infected by F. circinatum can remain asymptomatic for long periods of time, accurate and rapid tools are needed for real-time diagnostics and surveillance at ports, in nurseries, and in plantations. To meet this need and to limit the spread and impact of the pathogen, we developed a molecular test using loop-mediated isothermal amplification (LAMP), a technology that allows for the rapid detection of pathogen DNA on portable, field-capable devices. LAMP primers were designed and validated to amplify a gene region unique to F. circinatum. Using a globally representative collection of F. circinatum isolates and other closely related species, we have demonstrated that the assay can be used to identify F. circinatum across its genetic diversity and that it is sensitive to as few as 10 cells from purified DNA extracts. The assay can also be used with a simple, pipette-free DNA extraction method and is compatible with testing symptomatic pine tissues in the field. This assay has the potential to facilitate diagnostic and surveillance efforts both in the laboratory and in the field and, thus, to reduce the spread and impact of pitch canker worldwide.
Collapse
Affiliation(s)
- Colton D Meinecke
- D. B. Warnell School of Forestry of Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| | - Lieschen De Vos
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Neriman Yilmaz
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Caterina Villari
- D. B. Warnell School of Forestry of Natural Resources, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
4
|
Stewart D, Djoumad A, Holden D, Kimoto T, Capron A, Dubatolov VV, Akhanaev YB, Yakimova ME, Martemyanov VV, Cusson M. A TaqMan Assay for the Detection and Monitoring of Potentially Invasive Lasiocampids, With Particular Attention to the Siberian Silk Moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:5. [PMID: 36723233 PMCID: PMC9890919 DOI: 10.1093/jisesa/ieac062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 05/25/2023]
Abstract
The Siberian silk moth, Dendrolimus sibiricus Tschetverikov, is a very serious pest of conifers in Russia and is an emerging threat in North America where an accidental introduction could have devastating impacts on native forest resources. Other Dendrolimus Germar species and related Eurasian lasiocampids in the genus Malacosoma (Hubner) could also present a risk to North America's forests. Foreign vessels entering Canadian and U.S. ports are regularly inspected for Lymantria dispar (Linnaeus) and for the presence of other potentially invasive insects, including suspicious lasiocampid eggs. However, eggs are difficult to identify based on morphological features alone. Here, we report on the development of two TaqMan (Roche Molecular Systems, Inc., Rotkreuz, Switzerland) assays designed to assist regulatory agencies in their identification of these insects. Developed using the barcode region of the cytochrome c oxidase I (COI) gene and run in triplex format, the first assay can detect Dendrolimus and Malacosoma DNA, and can distinguish North American from Eurasian Malacosoma species. The second assay is based on markers identified within the internal transcribed spacer 2 (ITS2) region and was designed to specifically identify D. sibiricus, while discriminating closely related Dendrolimus taxa. In addition to providing direct species identification in the context of its use in North America, the D. sibiricus assay should prove useful for monitoring the spread of this pest in Eurasia, where its range overlaps with those of the morphologically identical D. superans (Butler) and similar D. pini (Linnaeus). The assays described here can be performed either in the lab on a benchtop instrument, or on-site using a portable machine.
Collapse
Affiliation(s)
- Don Stewart
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Abdelmadjid Djoumad
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
| | - Dave Holden
- Canadian Food Inspection Agency, Burnaby, British Columbia, Canada
| | - Troy Kimoto
- Canadian Food Inspection Agency, Burnaby, British Columbia, Canada
| | - Arnaud Capron
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vladimir V Dubatolov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuriy B Akhanaev
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Maria E Yakimova
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Department of Information Biology, Novosibirsk State University, Novosibirsk, Russia
| | - Vyacheslav V Martemyanov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Michel Cusson
- Laurentian Forestry Centre, Natural Resources Canada, Quebec City, Quebec, Canada
- Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Mansotra R, Vakhlu J. Comprehensive account of present techniques for in-field plant disease diagnosis. Arch Microbiol 2021; 203:5309-5320. [PMID: 34410444 DOI: 10.1007/s00203-021-02529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
The early detection of plant pathogens is an appropriate preventive strategy for the management of crop yield and quality. For this reason, effective diagnostic techniques and tools, which are simple, specific, rapid and economic, are needed to be developed. Although several such technologies have been developed still most of them suffer one or the other limitation. Major limitations of the widely used diagnostic methods are requirement of trained staff and laboratory setup. Development of point-of-care diagnostic devices (handy portable devices) that require no specialized staff and can directly be used in fields is need of the hour. The aim of this review is to compile the information on current promising techniques that are in use for plant-pathogen diagnosis. Additionally, it focuses on the latest in-field pathogen diagnostic techniques with associated advantages and limitations.
Collapse
Affiliation(s)
- Ritika Mansotra
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, India
| | - Jyoti Vakhlu
- Metagenomic Laboratory, School of Biotechnology, University of Jammu, Jammu, India.
| |
Collapse
|
6
|
Current practices and emerging possibilities for reducing the spread of oomycete pathogens in terrestrial and aquatic production systems in the European Union. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Assay Optimization Can Equalize the Sensitivity of Real-Time PCR with ddPCR for Detection of Helicoverpa armigera (Lepidoptera: Noctuidae) in Bulk Samples. INSECTS 2021; 12:insects12100885. [PMID: 34680654 PMCID: PMC8538000 DOI: 10.3390/insects12100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Invasive species are a constant threat to agriculture throughout the world against which early detection is one of the primary defenses. The Old World bollworm is one of the most important invasive agricultural pests in the world. While historically absent from the Americas, this species was first found in South America in 2013 and poses an ongoing threat of spreading into North America. Surveys are conducted each year, which result in hundreds or thousands of traps that must be screened for this species. Unfortunately, the most common non-target is the native corn earworm, which is nearly identical morphologically to the Old World bollworm and cannot be easily separated. Molecular methods have been developed to screen these trap samples, but the required equipment is expensive and not commonly available. This study details improvements to current molecular methods that will allow for screening of bulk trap samples using standard laboratory instruments and protocols. The ability to perform these methods in nearly any molecular biology lab will greatly enhance our ability to detect and exclude this important pest. Abstract Helicoverpa armigera (Hübner) is one of the most important agricultural pests in the world. This historically Old World species was first reported in Brazil in 2013 and has since spread throughout much of South America and into the Caribbean. Throughout North America, H. armigera surveys are ongoing to detect any incursions. Each trap is capable of capturing hundreds of native Helicoverpa zea (Boddie). The two species cannot be separated without genitalic dissection or molecular methods. A ddPCR assay is currently used to screen large trap samples, but this equipment is relatively uncommon and expensive. Here, we optimized a newly designed assay for accurate and repeatable detection of H. armigera in bulk samples across both ddPCR and less costly, and more common, real-time PCR methods. Improvements over previously designed assays were sought through multiple means. Our results suggest bulk real-time PCR assays can be improved through changes in DNA extraction and purification, so that real-time PCR can be substituted for ddPCR in screening projects. While ddPCR remains a more sensitive method for detection of H. armigera in bulk samples, the improvements in assay design, DNA extraction, and purification presented here also enhance assay performance over previous protocols.
Collapse
|
8
|
Randolph KC, Dooley K, Shaw JD, Morin RS, Asaro C, Palmer MM. Past and present individual-tree damage assessments of the US national forest inventory. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:116. [PMID: 33559773 DOI: 10.1007/s10661-020-08796-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Identifying the signs and symptoms of pathogens, insects, and other biotic and abiotic agents provides valuable information about the absolute and relative impacts of different types of damage across the forest landscape. In the USA, damage collection protocols have been included in various forms since the initiation of state-level forest surveys in the early twentieth century; however, changes in the protocols over time have made it difficult for the data to be used to its full potential. This article outlines differences in protocols across inventory regions, changes in protocols over time, and limitations and utility of the data so that those interested in using the US national forest inventory database will better understand what data are available and how they have been and can be used.
Collapse
Affiliation(s)
| | - Kerry Dooley
- Southern Research Station, USDA Forest Service, Knoxville, TN, USA
| | - John D Shaw
- Rocky Mountain Research Station, USDA Forest Service, Ogden, UT, USA
| | - Randall S Morin
- Northern Research Station, USDA Forest Service, York, PA, USA
| | | | - Marin M Palmer
- Pacific Northwest Region (R6), USDA Forest Service, Portland, OR, USA
| |
Collapse
|
9
|
Van der Heyden H, Fortier AM, Savage J. A HRM Assay for Rapid Identification of Members of the Seedcorn Maggot Complex (Delia florilega and D. platura) (Diptera: Anthomyiidae) and Evidence of Variation in Temporal Patterns of Larval Occurrence. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2920-2930. [PMID: 33080027 DOI: 10.1093/jee/toaa230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The seedcorn maggot Delia platura (Meigen), and the bean seed maggot Delia florilega (Zetterstedt) can cause considerable feeding damage to a wide range of cultivated crops. The recent discovery of two distinct genetic lines of D. platura, each with a unique distribution pattern overlapping only in eastern Canada, suggests the presence of a new cryptic species for the group. The reliable identification of the three species/lines in the seedcorn maggot complex is crucial to our understanding of their distribution, phenology, and respective contribution to crop damage as well as to the development of specific integrated pest management approaches. As these taxa are morphologically indistinguishable in the immature stages, we developed a high-resolution melting PCR (HRM) assay using primers amplifying a variable 96-bp PCR product in the CO1 mitochondrial gene for rapid and economical identification of specimens. The three species/lines exhibited distinguishable melting profiles based on their different Tm values (between 0.4 and 0.9°C) and identification results based on HRM and DNA sequencing were congruent for all specimens in the validation data set (n = 100). We then used the new, highly sensitive HRM assay to identify survey specimens from the seedcorn maggot complex collected in Quebec, Canada, between 2017 and 2019. Progress curves developed to document the temporal occurrence patterns of each species/lines indicate differences between taxa, with the N-line (BOLD:AAA3453) of D. platura appearing approximately 17 d before D. florilega (BOLD:ACR4394) and the H-line (BOLD:AAG2511) of D. platura.
Collapse
Affiliation(s)
| | | | - Jade Savage
- Department of Biological Sciences, Bishop's University, Sherbrooke, QC, Canada
| |
Collapse
|
10
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|