1
|
Nayak SS, Panigrahi M, Dutt T. Genome-wide insights into selection signatures for transcription factor binding sites in cattle ROH regions. Mamm Genome 2025:10.1007/s00335-025-10113-3. [PMID: 39984753 DOI: 10.1007/s00335-025-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Runs of Homozygosity (ROH) regions are characterized by homozygous genotypes inherited from a common ancestor, often arising from positive selection for adaptive traits. These homozygous regions may arise due to inbreeding, selective breeding, or demographic events like population bottlenecks. Transcription factor binding sites (TFBS) are short, specific DNA sequences where transcription factors bind to regulate the expression of nearby genes. These sites are essential for controlling biological processes such as development, metabolism, and immune response. TFBS act as key regulatory elements, and their variations can influence gene activity, contributing to phenotypic differences and adaptation. ROH often encompass regulatory elements, including TFBS, suggesting a functional connection between these genomic features. This study investigates TFBS within ROH regions in 297 animals of six cattle breeds: Gir (48), Tharparkar (72), Vrindavani (72), Frieswal (14), Holstein Friesian (63), and Jersey (28). Utilizing genotyped data of these animals, we identified genomic regions enriched with ROH. We focused on the central 10 kb regions of 50 ROH regions common across all breeds. Within these regions, 450 motifs were examined, identifying 168 transcription factors potentially binding to these regions. The results emphasize the role of TFBS in gene regulation and adaptive processes. By linking ROH patterns to regulatory elements, this study enhances our understanding of the genetic architecture underlying phenotypic traits and their adaptation to environmental pressures. These findings provide insights into the molecular mechanisms influencing genetic variation in cattle populations.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
2
|
Vieira JIG, Braga LG, Chud TCS, Ferreira PH, Guimarães SEF, Martins MF, do Carmo Panetto JC, Machado MA, Silva DBDS, Bonafé CM, Magalhães AFB, da Silva MVGB, Verardo LL. Resequencing of Brazilian locally adapted cattle breeds revealed variants in candidate genes and transcription factors for meat fatty acid profile. J Anim Breed Genet 2024; 141:628-642. [PMID: 38686591 DOI: 10.1111/jbg.12869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The beef cattle industry has experienced a shift driven by a market demand for healthier meat, cost efficiency and environmental sustainability in recent years. Consequently, there has been a growing focus on the fatty acids content and functions of meat in cattle breeding programmes. Besides, a deeper understanding of the biological mechanisms influencing the expression of different phenotypes related to fatty acid profiles is crucial. In this study, we aimed to identify Single-Nucleotide Variants (SNV) and Insertion/Deletion (InDels) DNA variants in candidate genes related to fatty acid profiles described in genomic, transcriptomic and proteomic studies conducted in beef cattle breeds. Utilizing whole-genome re-sequencing data from Brazilian locally adapted bovine breeds, namely Caracu and Pantaneiro, we identified SNVs and InDels associated with 23,947 genes. From these, we identified 318 candidate genes related to fatty acid profiles that contain variants. Subsequently, we select only genes with SNVs and InDels in their promoter, 5' UTR and coding region. Through the gene-biological process network, approximately 19 genes were highlighted. Furthermore, considering the studied trait and a literature review, we selected the main transcription factors (TF). Functional analysis via gene-TF network allowed us to identify the 30 most likely candidate genes for meat fatty acid profile in cattle. LIPE, MFSD2A and SREBF1 genes were highlighted in networks due to their biological importance. Further dissection of these genes revealed 15 new variants found in promoter regions of Caracu and Pantaneiro sequences. The gene networks facilitated a better functional understanding of genes and TF, enabling the identification of variants potentially related to the expression of candidate genes for meat fatty acid profiles in cattle.
Collapse
Affiliation(s)
| | - Larissa Graciano Braga
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | - Lucas Lima Verardo
- Universidade Federal dos Vales Do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Kaster N, Khan R, Ahmad I, Zhigerbayevich KN, Seisembay I, Nurbolat A, Hamitovna SK, Mirambekovna OK, Bekbolatovna MA, Amangaliyev TG, Bolatbek A, Yeginbaevich TZ, Ahmad S, Linsen Z, Baibolsynovna BA. RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation. Anim Biosci 2024; 37:929-943. [PMID: 37946430 PMCID: PMC11065710 DOI: 10.5713/ab.23.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. METHODS The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. RESULTS The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their downregulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. CONCLUSION Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.
Collapse
Affiliation(s)
- Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Kazhgaliyev Nurlybay Zhigerbayevich
- Candidate of Sciences in Agriculture, Researcher of Scientific and Production Centre for Animal Husbandry and Veterinary Limited Liability Partnership, Astana 010000,
Kazakhstan
| | - Imbay Seisembay
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Akhmetbekov Nurbolat
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Shaikenova Kymbat Hamitovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Omarova Karlygash Mirambekovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | | | | | - Ateikhan Bolatbek
- Faculty of Agricultural Sciences, Toraighyrov University, Pavlodar 140000,
Kazakhstan
| | | | - Shakoor Ahmad
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | | |
Collapse
|
4
|
Ullah I, Khan R, Suhail SM, Ahmad I, Khan FA, Shoaib M, Farid K, Ayari-Akkari A, Morfeine EA. Association of polymorphism in the promotor area of the caprine BMPR1B gene with litter size and body measurement traits in Damani goats. Trop Anim Health Prod 2024; 56:137. [PMID: 38649642 DOI: 10.1007/s11250-024-03991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to explore polymorphisms in the promoter region of the caprine BMPR1B (Bone morphogenetic protein receptor 1 beta) gene and its association with body measurement and litter size traits in Damani does. A total of 53 blood samples were collected to analyze the association between the BMPR1B gene polymorphism and 11 phenotypic traits in Damani female goats. The results revealed that three novel SNPs were identified in the promoter region of the caprine BMPR1B gene, including g.67 A > C (SNP1), g.170 G > A(SNP2), and g.501A > T (SNP3), among which the SNP1 and SNP2 were significantly (p < 0.05) associated with litter size and body measurement traits in Damani goats. In SNP1 the AC genotype could be used as a marker for litter size, and the CC genotype for body weight in Damani goats. In SNP2, the genotype GG was significantly (p < 0.05) associated with ear and head length. Therefore, we can conclude from the present study, that genetic variants AC and CC of the caprine BMPR1B gene could be used as genetic markers for economic traits through marker-assisted selection for the breed improvement program of the Damani goat.
Collapse
Affiliation(s)
- Inayat Ullah
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Shoaib
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Kamran Farid
- Department of Livestock and Dairy Development (Extension) Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| | - Ekhlas Ali Morfeine
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
5
|
Zhao X, Yan J, Chu H, Wu Z, Li W, Zhang Q, Zhang Y, Guo Y, Fan Z. The polymorphism of the ovine insulin like growth factor-2 (IGF2) gene and their associations with growth related traits in Tibetan sheep. Trop Anim Health Prod 2023; 56:19. [PMID: 38110604 DOI: 10.1007/s11250-023-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
In the current study, the role of the ovine IGF2 as a potential candidate gene was investigated as though marker-assisted selection in Chinese Tibetan sheep. The Sanger DNA sequencing method explored five single nucleotide polymorphisms (SNPs) in 5'UTR of the ovine IGF2 gene (C15640T, G15801A, G15870A, C15982G and G15991A) in Chinese Tibetan sheep. The frequencies of four SNPs were within the Hardy-Weinberg Equilibrium (chi-square test) except C15982G. The statistical analysis indicated that the C15640T and G15801A were significantly associated with body height, body length, chest circumference, and body weight (P < 0.05 or P < 0.01). Furthermore, C15982G variant exhibited significant correlation with the body weight (P < 0.01). These findings suggests that the promoter variants of IGF2 gene could be used as a candidate gene through marker-assisted selection for the body weight and body measurement traits in Tibetan sheep breeding program.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Jinyun Yan
- Gaoqing County Black Cattle Industry Development Center, Gaoqing County Bureau of Agriculture and Rural Affairs, Zibo, Shandong Province, 255000, People's Republic of China
| | - Hanping Chu
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Wendi Li
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Qing Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Yanmin Guo
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China.
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China.
| |
Collapse
|
6
|
Zhao X, Khan R, Hongfang G, Abbas Raza SH, Ayari-Akkari A, Othman G, Alshammari AM, Aloufi BH, Alabbosh KF, Alshammari WB, Linsen Z. Genetic variants of TORC1 gene promoter and their association with carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:2537-2545. [PMID: 35916659 DOI: 10.1080/10495398.2022.2105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, sequencing of TORC1 prompter region explored three SNPs at loci g.80G>T, g.93A>T, and g.1253G>A. The SNP1 produced GG, GT and TT, SNP2 AA, AT and TT, and SNP3 produced GG, GA and AA genotypes. Allelic and genotypic frequencies analysis exhibited that SNP1 is within Hardy-Weinberg equilibrium (HWE). All three SNPs were found highly polymorphic as PIC value (0.25 < PIC < 0.50). At loci g.80G>T the cattle with genotype GG showed significantly (P <0.01) larger body length (BL), Wither height (WH), Hip height (HH), Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). The genotype AA at g.93A>T showed significantly (P< 0.01 and 0.05) Larger body length (BL), Wither height (WH), Hip height, Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). Interestingly, the carcass quality parameters such as Ultrasound loin area (ULA) and Intramuscular fat percentage (IF%) was highest in genotype GG at loci g.1253G>A. These findings conclude that genotype GG at loci g.80 G>T and AA at loci g.93A>T could be used as genetic markers for body measurement and genotype GG at loci g.1253G>A for carcass quality traits of TORC1 gene in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Guo Hongfang
- Medical College, Xuchang University, Xuchang, China
| | | | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | | | - Wasimah B Alshammari
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Ullah A, Khan R, Suhail SM, Ahmad I, Anwar Khan F, Subhan Qureshi M, Khan NA, Ayari-Akkari A, Ahmed DAEM. Bioinformatics analysis and the association of polymorphisms within the caprine GDF9 gene promoter with economically useful traits in Damani goats. Anim Biotechnol 2023; 34:3449-3460. [PMID: 36576034 DOI: 10.1080/10495398.2022.2154676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The blood sample from 60 Damani does were collected and genomic DNA was extracted, and DNA integrity were investigated. A 447 bp promoter fragment of the GDF9 gene was amplified and Sanger sequenced for the identification of GDF9 gene polymorphism. Three novel SNPs were identified at positions g. 97(T > A), g. 142 (G > G) and g. 313(C > T) in the promoter region of the caprine GDF9 gene which significantly (P < 0.05) influenced litter size, body measurement, and milk production traits in Damani goats. The genotype CT of SNP1 significantly (P < 0.05) improved litter size, genotype GG of SNP2 significantly (P < 0.05) enhanced milk production, while the genotypes CC of SNP3 significant (P < 0.05) increased body measurement traits in Damani goats. Moreover, in SNP1 loss of 3 transcription factors (TF) binding sites occurred, SNP2 caused loss of two TFs binding sites, and SNP3 caused loss of a single TF binding site. Similarly, SNP1 and SNP2 caused the gain of three new potential TF binding sites, and SNP3 caused gain of two new TF binding sites. It is concluded that caprine GDF9 gene could be used as a candidate gene for litter size, milk production and body measurement traits in Damani goats through marker-assisted selection for future breeding program.
Collapse
Affiliation(s)
- Aftab Ullah
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Subhan Qureshi
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | |
Collapse
|
8
|
Kinkpe L, Khan R, Suhail SM, Ahmad I, Khan FA, Ayari-Akkari A, Siddiqui S. Polymorphism and association study of lactoferrin (LF) gene with milk yield, milk composition, and somatic cell count in Beetal goats. Trop Anim Health Prod 2023; 55:415. [PMID: 37996555 DOI: 10.1007/s11250-023-03834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
The sequence analysis of PCR product exhibited four novel SNPs in the promoter region of the LF gene at loci g.98T>C, g.143T>A, g.189AC>A, and g.346A>G. Each SNP yielded three genotypes; the genotypes TT (SNP1), AA (SNP3), and GG (SNP4) decreased SCC and increase milk quality traits such as density, protein, and milk yield (P < 0.01). The genotype CC (SNP2) and CA (SNP4) significantly (P < 0.01) decreased the milk quality parameters, while genotypes TC (SNP2) and GG (SNP4) showed significantly (P < 0.01) less SCC and increase lactose % in milk. Furthermore, screening of the LF promoter sequence explored the gain of four TF binding sites at locus g.98T˃C and three TF binding sites at g.346A˃G. However, the loss of four and two TF binding sites was seen at locus g.143T˃A and g.189C˃A, respectively. We can conclude from the present study that the GG, TT, and AA genotype might be utilized as genetic markers in marker-assisted selection for the breed improvement program of Beetal goats.
Collapse
Affiliation(s)
- Lionel Kinkpe
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, P.O Box 960, Saudi Arabia
| | - Sazada Siddiqui
- Biology Department, College of Science, King Khalid University, Abha, P.O Box 960, Saudi Arabia
| |
Collapse
|
9
|
Nurgulsim K, Khan R, Raza SHA, Ayari-Akkari A, Jeridi M, Ahmad I, Arain UM, Abd El-Aziz AH, Khan H, Zan L. Bioinformatics and genetic variants analysis of FGF10 gene promoter with their association at carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:1950-1959. [PMID: 35446746 DOI: 10.1080/10495398.2022.2059667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The fibroblast growth factor 10 (FGF10) gene regulates adipogenesis and myogensis. In this study, sequencing of FGF10 prompter region identified three SNPs at loci g.78G > A, g.116C > T and g.201A > T. Each SNP yields three genotypes as GG, GA and AA at loci g.78G > A, CC, CT and TT at loci g.116C > T and AA, AT and TT at loci g.201A > T. Allelic and genotypic frequencies of all three SNPs deviated from the Hardy-Weinberg equilibrium (HWE) (P < 0.05) and were found highly polymorphic as PIC (0.25 < PIC < 0.50). Moreover, we found highest LD (D'/γ2) between SNP2 and SNP3 (0.989/0.909), followed by SNP1 and SNP3 (0.944/0.796). Moreover, three variants of FGF10 gene promoter exhibited significant (P < 0.05) association with body measurement and carcass quality traits in Qinchuan beef cattle. At loci g.78G > A, the genotype GG showed significantly (P < 0.01) larger body length (BL), rump length (RL), chest depth (CD), chest circumference (CC) and ultrasound loin area (ULA). The genotype TC at loci g.116C > T showed significantly (P < 0.01 and 0.05) larger body measurement and intramuscular fat, and ultrasound loin area (ULA). In addition to that, at loci g.201A > T, genotype TT showed significantly (P < 0.01 and P < 0.05) larger body length (BL), rump length (RL), hip width (HW), chest circumference (CC) and ultrasound loin area (ULA). Additionally, screening of promoter sequence of FGF10 gene explored loss of four TFs binding sites (KLF3, ZNF37α, GLIS2 and BCL11A) at g.116C > T because of SNP2. However, a single TF binding site was lost at g.202A > T due to SNP3. Interestingly, none of TF binding site was lost at g.78G > A in SNP1; however, one new TF binding site was gained at this location due to SNP1. These findings conclude that genotype GG, TC and TT could be used as genetic markers of FGF10 gene for body measurement and carcass quality traits in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro technical University, Nur-Sultan, Kazakhstan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture, Peshawar, Pakistan
| | | | - Amel Ayari-Akkari
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Sciences in Abha, King Khalid University, Abha, Saudi Arabia
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture, Peshawar, Pakistan
| | - Uroosa Mumtaz Arain
- Department of Poultry Husbandry, Sindh Agriculture University, Tandojam, Pakistan
| | - Ayman Hassan Abd El-Aziz
- Department of Animal Breeding and Production, Faculty of Veterinary Medicine, Damanhour University, Damanhur, Egypt
| | - Hamayun Khan
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
10
|
Wang X, Li J, Bai J, Chen M, Wang L, Fan H, Zeng F, Lu X, He Y. Exploring the Impact of Insertion/Deletion in FTO and PLIN1 Genes on Morphometric Traits in Sheep. Animals (Basel) 2023; 13:3032. [PMID: 37835645 PMCID: PMC10571888 DOI: 10.3390/ani13193032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
This study aimed to identify InDels from the FTO and PLIN1 genes and to analyze their association with morphometric traits in Hu sheep (HS), Dupor sheep (DS), and Small Tail Han sheep (STHS). The FTO and PLIN1 genes were genotyped using the insertion/deletion (InDel) method. A one-way ANOVA with SPSS 26.0 software (IBM Corp, Armonk, NY, USA) was used to assess the effect of the InDel FTO and PLIN1 genes on morphometric traits. The results revealed significant associations between certain InDels and the morphometric traits in different breeds of sheep. Specifically, FTO-2 was significantly associated with cannon circumference (CaC) in HS rams and body height (BoH) in HS ewes (p < 0.05). FTO-2 was also significantly associated with chest width (ChW), CaC, head length (HeL), and coccyx length (CoL) in the STHS breed (p < 0.05). FTO-3 showed significant associations with BoH in HS rams and BoH, back height (BaH), ChW, and chest depth (ChD) in HS ewes (p < 0.05). FTO-3 was also significantly associated with ChW in the DS and STHS breeds (p < 0.05). FTO-5 was significantly associated with body weight (BoW) in the DS breed and BoH in the STHS breed (p < 0.05). Furthermore, PLIN1 was significantly related to BoW in the DS breed and was significantly associated with CoL and forehead width (FoW) in the STHS breed (p < 0.05). In conclusion, the study suggested that InDels in the FTO and PLIN1 genes could provide practical information to improve morphometric traits in sheep breeding.
Collapse
Affiliation(s)
| | | | - Junyan Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.W.)
| | | | | | | | | | | | | |
Collapse
|
11
|
Genetic polymorphism of Β-casein gene and its association with milk production and composition in Azi-Kheli buffalo. Trop Anim Health Prod 2023; 55:94. [PMID: 36809577 DOI: 10.1007/s11250-023-03511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
The aim of this study was to find out the genetic polymorphism in β-casein gene CSN2 in Azi-Kheli buffaloes found in district Swat. Blood samples from 250 buffaloes were collected and processed in lab for sequencing to see the genetic polymorphism in CSN2 gene on 67 position of exon7. The β-casein is a milk second abundant protein having some variants, wherein A1 and A2 are the most common. After performing sequence analysis, it was found that Azi-Kheli buffaloes were homozygous for only A2 type variant. The amino acid change (proline to histadine) on 67 position of exon 7 was not found; however, three other novel SNPs at loci g.20545A > G, g.20570G > A, and g.20693C > A were identified in the study. Amino acid change due to SNPs were found as SNP1, valine > proline; SNP2, leucin > phenylalanine; and SNP3, threonine > valine. Allelic and genotypic frequencies' analysis exhibited that all three SNPs were following the Hardy-Weinberg equilibrium (HWE: P < 0.05). All the three SNPs showed medium PIC value and gene heterozygosity. The SNPs located on different position of exon 7 of CSN2 gene exhibited associations with some of the performance traits and milk composition. Higher daily milk yield of 9.86 ± 0.43 L and the peak milk yield of 13.80 ± 0.60 L were found in response to SNP3 followed by SNP2 and SNP1. The percentage of milk fat and protein was found significantly higher (P ≤ 0.05) in relation to SNP3 followed by SNP2 and SNP1 given as 7.88 ± 0.41, 7.48 ± 0.33, and 7.15 ± 0.48 for fat% and 4.00 ± 0.15, 3.73 ± 0.10 and 3.40 ± 0.10 for protein%. It was concluded that Azi-Kheli buffalo milk contains A2 genetic variant along with other useful novel variants indicating quality milk for human health. Genotypes of SNP3 should be given preference in selection both in indices and nucleotide polymorphism.
Collapse
|
12
|
Ning Y, Zhang L, Wang W, Wu S. Effect of genetic variants in the SMAD1 and SMAD5 genes promoter on growth and beef quality traits in cattle. Gene 2022; 819:146220. [PMID: 35093446 DOI: 10.1016/j.gene.2022.146220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
The SMAD1 and SMAD5 genes belong to mothers against decapentaplegic proteins family, which participate in the BMP pathway to control skeletal myogenesis and growth. In the present study, we analyzed the associations between polymorphisms of SMAD1 and SMAD5 genes promoter and important economical traits in Qinchuan cattle. Four SNPs in the SMAD1 gene promoter and three SNPs in the SMAD5 promoter were identified by sequencing of 448 Qinchuan cattles. Allelic and frequency analyses of these SNPs resulted in eight haplotypes both in the promoters of the two genes promoter and identified potential cis-regulatory transcription factor (TF) components. In addition, correlation analysis showed that cattle SMAD1 promoter activity of individuals with Hap4 (P < 0.01) was stronger than that of individuals with Hap2. while the transcriptional activity of individuals with Hap3 within SMAD5 gene promoter was significantly (P < 0.01) higher followed by H2. Uniformly, diplotypes H4-H6 of SMAD1 gene and H1-H3 of SMAD5 gene performed significant (P < 0.01) associations with body measurement and improved carcass quality traits. All these results have indicated that polymorphisms in SMAD1 and SMAD5 genes promoter could impact the transcriptional regulation and then affect muscle content in beef cattle. Moreover, both the SMAD1 and SMAD5 genes were expressed ubiquitously in 10 tissues and had higher expression in the longissimus thoracis tissue from 6-month-old and 12-month-old cattle than in cattle of other ages. We can conclude that SMAD1 and SMAD5 genes may play an important role in muscle growth and development, and the variants mapped within SMAD1 and SMAD5 genes can be utilized in molecular marker-assisted selection for cattle carcass quality and body measurement traits in breed improvement programs of Qinchuan cattle.
Collapse
Affiliation(s)
- Yue Ning
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
13
|
Association Between Natriuretic Peptide Receptor 2 (NPR2) RS208158047 Polymorphism and Fattening Performance of Young Bulls. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The objective of this study was to determine fattening performance data for Charolais, Limousin and Blonde d’Aquitaine beef cattle and associate these data with NPR2 gene 8:g.59961937 T>C (rs208158047) mutation. Experiments were conducted with 176 beef cattle (77 Charolais, 66 Limousin and 33 Blonde d’Aquitaine) at nine months of age. Experiments lasted for 9 months and animals were slaughtered at the age of 18 months. Cattle body weights were determined at four different periods: beginning of fattening (d0), 60th day of fattening (d60), 120th day of fattening (d120) and at the end of fattening (sw). In terms of rs208158047 mutation of Charolais, Limousin and Blonde d’Aquitaine breeds, TT and CT genotypes were identified, and CC genotype was not encountered. The association of average daily gain (ADG) in d0-d60, d0-d120 and d0-sw periods with the genotypes of rs208158047 mutation was found to be significant (P<0.05). Greater ADGs were observed in rs208158047-CT genotypes compared to rs208158047-TT genotypes. These results indicate that the selection of bovine NPR2 gene could be used to ensure the breeding direction for growth related traits of the beef cattle.
Collapse
|
14
|
Arora R, Siddaraju NK, Manjunatha SS, Sudarshan S, Fairoze MN, Kumar A, Chhabra P, Kaur M, Sreesujatha RM, Ahlawat S, Vijh RK. Muscle transcriptome provides the first insight into the dynamics of gene expression with progression of age in sheep. Sci Rep 2021; 11:22360. [PMID: 34785720 PMCID: PMC8595721 DOI: 10.1038/s41598-021-01848-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
The dynamic synergy of genes and pathways in muscles in relation to age affects the muscle characteristics. Investigating the temporal changes in gene expression will help illustrate the molecular mechanisms underlying muscle development. Here we report the gene expression changes in skeletal muscles through successive age groups in Bandur, a meat type sheep of India. RNA sequencing data was generated from the longissimus thoracis muscles from four age groups, ranging from lamb to adult. Analysis of 20 highest expressed genes common across the groups revealed muscle protein, phosphorylation, acetylation, metal binding and transport as significant functions. Maximum differentiation was observed after 2.5–3 years on transition from lambs to adult. Transcriptional regulation by the TFAP2 transcription factors, IL-6 signaling and PI3K/AKT signaling pathways were enriched in younger animals. The gene-protein network demarcated key interactive genes involved in muscle development and proliferation that can be used as candidates for future research on improvement of muscle characteristics.
Collapse
Affiliation(s)
- Reena Arora
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India.
| | | | - S S Manjunatha
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, 560024, India
| | - S Sudarshan
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, 560024, India
| | | | - Ashish Kumar
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - Pooja Chhabra
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - Mandeep Kaur
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - R M Sreesujatha
- Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, 560024, India
| | - Sonika Ahlawat
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| | - Ramesh Kumar Vijh
- Animal Biotechnology Division, ICAR-National Bureau of Animal Genetic Resources, G T Road By-Pass, P O Box 129, Karnal, 132001, Haryana, India
| |
Collapse
|
15
|
Raza SHA, Liu GY, Zhou L, Gui LS, Khan R, Jinmeng Y, Chugang M, Schreurs NM, Ji R, Zan L. Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene 2020; 758:144957. [PMID: 32683081 DOI: 10.1016/j.gene.2020.144957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 12/01/2022]
Abstract
Leptin receptor (LEPR) gene play a pivotal role in the regulation of fat deposition and energy homeostasis. This study investigated the presence and frequency of polymorphisms of bovine LEPR gene and determine whether the polymorphisms are associated with the fat deposition in two Chinese beef cattle breeds. Quantitative real-time polymerase chain reactions identified that the expression of LEPR gene was highest in the liver and subcutaneous fat. Four single nucleotide polymorphisms (SNPs) were identified including g.24169C > T, g.24256T > A, g.24267 G > C and g.24413T > A. A greater backfat thickness was associated with the AA genotype of g.24256T > A compared to the TT genotype. A greater intramuscular fat content was associated with the GG genotype of g.24267 G > C compared to the CC genotype. Both g.24169C > T and g.24413T > A were not correlated with fat deposition. These results indicated that the SNP g.24256T > A and g.24267 G > C of LEPR gene may be useful markers for genetic improvement of fat deposition in Chinese beef cattle breeds.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China.
| | - Gui-Yao Liu
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, Jiangxi Province 332005, PR China
| | - Li Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, PR China
| | - Lin-Sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, PR China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yang Jinmeng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mei Chugang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rodany Ji
- Utah State University, School of Animal Dairy and Veterinary Sciences, Logan, UT, 84322, USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China.
| |
Collapse
|
16
|
Raza SHA, Shijun L, Khan R, Schreurs NM, Manzari Z, Abd El-Aziz AH, Ullah I, Kaster N, Shah MA, Zan L. Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome 2020; 63:483-492. [PMID: 32615043 DOI: 10.1139/gen-2019-0184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The PLIN1 gene produces a phosphorylated protein wrapped in lipid droplets in adipocytes. This phosphorylation assists the mobilization of fat into adipose tissue. The purpose of the experiment was to study the polymorphism of the PLIN1 gene and its relationship with the body and carcass characteristics of Qinchuan cattle to find molecular genetic markers that can be used for breeding. The expression level of the PLIN1 gene was determined in various tissues by qRT-PCR. The results showed that the highest level of PLN1 expression was found in subcutaneous fat, followed by the heart and longissimus muscle, and the lowest level was found in the kidney. Five SNP loci of the PLIN1 gene were identified in 510 Qinchuan cattle, including g.3580T>C (SNP1), g.3898G>A (SNP2), g.8333G>A (SNP3), g.10517T>C (SNP4), and g.10538G>T (SNP5). The results show that SNP1, SNP2, SNP3, and SNP4 were moderately polymorphic (0.25 < PIC < 0.5), while SNP5 was minimally polymorphic (PIC < 0.25). SNP2, SNP3, and SNP5 were within Hardy-Weinberg equilibrium (P > 0.05), but SNP1 and SNP4 were not (P < 0.05). Correlation analysis showed that the five SNPs of the PLIN1 gene were correlated with back-fat depth, intramuscular fat, and chest depth of Qinchuan cattle. The double haplotype H2H4 in Qinchuan beef was associated with body and carcass traits. We conclude that variants mapped within PLIN1 can be used in marker-assisted selection for carcass quality and body traits in breed improvement programs for Qinchuan cattle.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Li Shijun
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Nicola M Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zeinab Manzari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Irfan Ullah
- Department of Biological Science, Karakoram International University, Ghizer Campus, Gilgit, Baltistan 15200, Pakistan
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| | - Mujahid Ali Shah
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China.,National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, P.R. China
| |
Collapse
|
17
|
Gui LS, Raza SHA, Memon S, Li Z, Abd El-Aziz AH, Ullah I, Jahejo AR, Shoorei H, Khan R, Quan G, Liu GY. Association of hormone-sensitive lipase (HSL) gene polymorphisms with the intramuscular fat content in two Chinese beef cattle breeds. Genomics 2020; 112:3883-3889. [PMID: 32619575 DOI: 10.1016/j.ygeno.2020.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Abstract
Hormone-sensitive lipase (HSL) was considered as an essential enzyme in glucolipid metabolism. It has been proposed to be a lead candidate gene for genetic markers of lipid deposition in livestock. The aim of this study was to identify sequence variants (SVs) of the bovine HSL gene and evaluate the relations to intramuscular fat in two indigenous Chinese beef cattle breeds. Expression analysis by quantitative real-time polymerase chain reactions (qPCR) indicated that expression levels of bovine HSL gene were highest in the perirenal fat and heart within two different age stage (adult and calf), respectively. Five SVs were identified by direct DNA sequencing, which included four missense mutations (g.16563C>T, g.16734G>A, g.16896A>G, g.17388G>T) in exon 8 and a synonymous mutation (g.17402C>T) in exon 9. Population genetic analysis showed that except for g.16563C>T and g.17402C>T, all the other detected SVs strongly affected the bovine intramuscular fat content (P < 0.01 or P < 0.05). The individuals with Hap5/5 diplotypes (CC-GG-GG-GG-CC) was highly significantly associated with intramuscular fat content than the other diplotypes (P < 0.01). The above results suggested that the HSL gene can used as potential candidate markers gene for the beef breed improvement through marker assisted selection in Chinese cattle breeds.
Collapse
Affiliation(s)
- Lin-Sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Sameeullah Memon
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, People's Republic of China
| | - Zhou Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai Province 810016, People's Republic of China
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Irfan Ullah
- Department of Biological Science, Karakoram International University, Ghizer Campus, Gilgit, Baltistan 15200, Pakistan
| | - Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, People's Republic of China.
| | - Gui Yao Liu
- Poyang Lake Eco-economy Research Center, Jiujiang University, Jiujiang, Jiangxi Province 332005, People's Republic of China.
| |
Collapse
|
18
|
The genetic polymorphisms of melanocortin-4 receptor gene are associated with carcass quality traits in a Chinese indigenous beef cattle breed. Res Vet Sci 2020; 132:202-206. [PMID: 32604043 DOI: 10.1016/j.rvsc.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022]
Abstract
Melanocortin-4 receptor (MC4R) was considered as an essential modifiers in feelings intake, the regulation of metabolism and body weight. This study aimed at identifying polymorphisms in MC4R gene that might associate with carcass quality traits in Chinese indigenous beef cattle breed. qPCR analysis showed that the MC4R gene was widely expressed in various tissues, with predominantly expression levels in heart. Three single-nucleotide polymorphisms (SNPs) were identified, including a mutation (g.85A > G) in 5'untranslated regions (UTR) and two mutations (g.927C > T and g.1069C > G) in exon 1. Based on the χ2 test, both g.927C > T and g.1069C > G loci fitted with Hardy-Weinberg equilibrium (P > .05). Population genetic analysis showed that except for g.85A > G, the other detected SNPs strongly affected the bovine back fat thickness and intramuscular fat content (P < .05). The individuals with Hap1/4 diplotypes (ACC-ATG) were highly significantly associated with carcass quality traits than the other diplotypes (P < .01 or P < .05). Results indicated that the bovine MC4R gene polymorphisms were implicated as genetic markers of potential importance in marker-assisted selection (MAS) strategies to improve carcass quality in Chinese Qinchuan cattle.
Collapse
|
19
|
Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle. Genomics 2020; 112:2804-2812. [PMID: 32220486 DOI: 10.1016/j.ygeno.2020.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Myogenic factor 5 plays actively roles in the regulation of myogenesis. The aims of this study are to identify the evolution information of MYF5 protein among 10 domestic and mammalian animals, to uncover the expression patterns of MYF5 gene in calves and adults of Qinchuan cattle, and to expose the genetic variants of the MYF5 gene and explore its effect on cattle growth traits and beef quality traits in Qinchuan cattle. The bioinformatics results showed that the MYF5 proteins highly conserved in different mammalian or domestic animals apart from chicken. The expression level of MYF5 gene in the heart, muscle, lung, large intestine and liver was greater than that of other tissues. PCR amplicons sequencing identified four novel SNPs at g.5738A>G, g.5785C>T and g.5816A>G in the 3rd exon region and g.6535A>G in the 3' UTR. Genotypic frequencies of g.5785C>T was harshly deviated from the HWE (P < .05). Genetic diversity was low or intermediate for the four SNPs and those SNPs were in the weak linkage disequilibrium. Association analysis results indicated g.5785C>T, g.5816A>G and g.6535A>G significant effect on growth performance and beef quality traits of Qinchuan cattle. H1H3 diplotype had greater body size and better beef quality. All the results implicate that the MYF5 gene might be applied as a promising candidate gene in Qinchuan cattle breeding.
Collapse
|