1
|
Dubelaar DPC, Volleman C, Phelp PG, Ibelings R, Voorn I, Tuip-de Boer AM, Polet CA, Roelofs JJ, Vlaar APJ, van Meurs M, van den Brom CE. Razuprotafib Does Not Improve Microcirculatory Perfusion Disturbances nor Renal Edema in Rats on Extracorporeal Circulation. Int J Mol Sci 2025; 26:3000. [PMID: 40243701 PMCID: PMC11989219 DOI: 10.3390/ijms26073000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) can be a life-saving intervention, but it is associated with high complication rates. ECMO induces systemic inflammation and endothelial hyperpermeability, thereby causing tissue edema, microcirculatory perfusion disturbances, and organ failure. This study investigated whether the inhibition of vascular endothelial protein tyrosine phosphatase (VE-PTP), a regulator of endothelial permeability, reduces extracorporeal circulation (ECC)-induced microvascular dysfunction. Rats were subjected to ECC after treatment with Razuprotafib (n = 11) or a placebo (n = 11), or they underwent a sham procedure (n = 8). Razuprotafib had no effect on the ECC-induced impairment of capillary perfusion, as assessed with intravital microscopy, nor did it influence the increased wet-to-dry weight ratio in kidneys, a marker of edema associated with ECC. Interestingly, Razuprotafib suppressed the ECC-induced increase in TNFα, whereas angiopoietin-2 even further increased, following the discontinuation of ECC. Circulating interleukin-6, ICAM-1, angiopoietin-1, and soluble Tie2 and tissue VE-PTP, Tie1, and Tie2 mRNA expression were not affected by Razuprotafib. Furthermore, Razuprotafib improved the PaO2/FiO2 ratio and reduced histopathological pulmonary interstitial inflammation following ECC compared to the placebo. To conclude, treatment with Razuprotafib did not improve ECC-induced microcirculatory perfusion disturbances nor renal edema.
Collapse
Affiliation(s)
- Dionne P. C. Dubelaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Carolien Volleman
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| | - Philippa G. Phelp
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Roselique Ibelings
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| | - Iris Voorn
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| | - Anita M. Tuip-de Boer
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Chantal A. Polet
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joris J. Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Charissa E. van den Brom
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (D.P.C.D.); (C.V.); (P.G.P.); (A.M.T.-d.B.); (C.A.P.); (A.P.J.V.)
- Laboratory for Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
2
|
Li Y, Volleman C, Dubelaar DPC, Vlaar APJ, van den Brom CE. Exploring the Impact of Extracorporeal Membrane Oxygenation on the Endothelium: A Systematic Review. Int J Mol Sci 2024; 25:10680. [PMID: 39409009 PMCID: PMC11477268 DOI: 10.3390/ijms251910680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Extracorporeal membrane oxygenation (ECMO) is a life-saving intervention for patients with circulatory and/or pulmonary failure; however, the rate of complications remains high. ECMO induces systemic inflammation, which may activate and damage the endothelium, thereby causing edema and organ dysfunction. Advancing our understanding in this area is crucial for improving patient outcomes during ECMO. The goal of this review is to summarize the current evidence of the effects of ECMO on endothelial activation and damage in both animals and patients. PubMed and Embase databases were systematically searched for both clinical and animal studies including ECMO support. The outcome parameters were markers of endothelial activation and damage or (in)direct measurements of endothelial permeability, fluid leakage and edema. In total, 26 studies (patient n = 16, animal n = 10) fulfilled all eligibility criteria, and used VA-ECMO (n = 13) or VV-ECMO (n = 6), or remained undefined (n = 7). The most frequently studied endothelial activation markers were adhesion molecules (ICAM-1) and selectins (E- and P-selectin). The levels of endothelial activation markers were comparable to or higher than in healthy controls. Compared to pre-ECMO or non-ECMO, the majority of studies showed stable or decreased levels. Angiopoietin-2, von Willebrand Factor and extracellular vesicles were the most widely studied circulating markers of endothelial damage. More than half of the included studies showed increased levels when compared to normal ranges, and pre-ECMO or non-ECMO values. In healthy animals, ECMO itself leads to vascular leakage and edema. The effect of ECMO support in critically ill animals showed contradicting results. ECMO support (further) induces endothelial damage, but endothelial activation does not, in the critically ill. Further research is necessary to conclude on the effect of the underlying comorbidity and type of ECMO support applied on endothelial dysfunction.
Collapse
Affiliation(s)
- Yakun Li
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.L.); (C.V.); (D.P.C.D.); (A.P.J.V.)
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Carolien Volleman
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.L.); (C.V.); (D.P.C.D.); (A.P.J.V.)
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Dionne P. C. Dubelaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.L.); (C.V.); (D.P.C.D.); (A.P.J.V.)
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.L.); (C.V.); (D.P.C.D.); (A.P.J.V.)
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Charissa E. van den Brom
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (Y.L.); (C.V.); (D.P.C.D.); (A.P.J.V.)
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Stevens HY, Jimenez AC, Wang B, Li Y, Selvam S, Bowles-Welch AC. Mesenchymal Stromal Cell (MSC) Functional Analysis-Macrophage Activation and Polarization Assays. Bio Protoc 2024; 14:e4957. [PMID: 38841292 PMCID: PMC10958173 DOI: 10.21769/bioprotoc.4957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 06/07/2024] Open
Abstract
Stem cell-based therapies have evolved to become a key component of regenerative medicine approaches to human pathologies. Exogenous stem cell transplantation takes advantage of the potential of stem cells to self-renew, differentiate, home to sites of injury, and sufficiently evade the immune system to remain viable for the release of anti-inflammatory cytokines, chemokines, and growth factors. Common to many pathologies is the exacerbation of inflammation at the injury site by proinflammatory macrophages. An increasing body of evidence has demonstrated that mesenchymal stromal cells (MSCs) can influence the immunophenotype and function of myeloid lineage cells to promote therapeutic effects. Understanding the degree to which MSCs can modulate the phenotype of macrophages within an inflammatory environment is of interest when considering strategies for targeted cell therapies. There is a critical need for potency assays to elucidate these intercellular interactions in vitro and provide insight into potential mechanisms of action attributable to the immunomodulatory and polarizing capacities of MSCs, as well as other cells with immunomodulatory potential. However, the complexity of the responses, in terms of cell phenotypes and characteristics, timing of these interactions, and the degree to which cell contact is involved, have made the study of these interactions challenging. To provide a research tool to study the direct interactions between MSCs and macrophages, we developed a potency assay that directly co-cultures MSCs with naïve macrophages under proinflammatory conditions. Using this assay, we demonstrated changes in the macrophage secretome and phenotype, which can be used to evaluate the abilities of the cell samples to influence the cell microenvironment. These results suggest the immunomodulatory effects of MSCs on macrophages while revealing key cytokines and phenotypic changes that may inform their efficacy as potential cellular therapies. Key features • The protocol uses monocytes differentiated into naïve macrophages, which are loosely adherent, have a relatively homogeneous genetic background, and resemble peripheral blood mononuclear cells-derived macrophages. • The protocol requires a plate reader and a flow cytometer with the ability to detect six fluorophores. • The protocol provides a quantitative measurement of co-culture conditions by the addition of a fixed number of freshly thawed or culture-rescued MSCs to macrophages. • This protocol uses assessment of the secretome and cell harvest to independently verify the nature of the interactions between macrophages and MSCs.
Collapse
Affiliation(s)
- Hazel Y. Stevens
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Angela C. Jimenez
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The Wallace H. Coulter Department of Biomedical
Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| | - Bryan Wang
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The Wallace H. Coulter Department of Biomedical
Engineering, Georgia Tech and Emory University, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| | - Ye Li
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
| | - Shivaram Selvam
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| | - Annie C. Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization
and Manufacturing, Institute for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, GA, USA
- The National Science Foundation (NSF) Engineering
Research Center (ERC) for Cell Manufacturing Technologies (CMaT), Georgia
Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
4
|
Cao JK, Hong XY, Feng ZC, Li QP. Mesenchymal stem cells-based therapies for severe ARDS with ECMO: a review. Intensive Care Med Exp 2024; 12:12. [PMID: 38332384 PMCID: PMC10853094 DOI: 10.1186/s40635-024-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is the primary cause of respiratory failure in critically ill patients. Despite remarkable therapeutic advances in recent years, ARDS remains a life-threatening clinical complication with high morbidity and mortality, especially during the global spread of the coronavirus disease 2019 (COVID-19) pandemic. Previous studies have demonstrated that mesenchymal stem cell (MSC)-based therapy is a potential alternative strategy for the treatment of refractory respiratory diseases including ARDS, while extracorporeal membrane oxygenation (ECMO) as the last resort treatment to sustain life can help improve the survival of ARDS patients. In recent years, several studies have explored the effects of ECMO combined with MSC-based therapies in the treatment of ARDS, and some of them have demonstrated that this combination can provide better therapeutic effects, while others have argued that some critical issues need to be solved before it can be applied to clinical practice. This review presents an overview of the current status, clinical challenges and future prospects of ECMO combined with MSCs in the treatment of ARDS.
Collapse
Affiliation(s)
- Jing-Ke Cao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xiao-Yang Hong
- Department of Pediatric Intensive Care Unit, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO.5 Nanmencang, Dongcheng District, 100700, Beijing, China
| | - Zhi-Chun Feng
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Qiu-Ping Li
- Department of Neonatology, Senior Department of Pediatrics, the Seventh Medical Center of PLA General Hospital, NO. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Abbà C, Croce S, Valsecchi C, Lenta E, Campanelli R, Codazzi AC, Brazzelli V, Carolei A, Catarsi P, Acquafredda G, Apicella A, Caliogna L, Berni M, Mannarino S, Avanzini MA, Rosti V, Massa M. Circulating Mesenchymal Stromal Cells in Patients with Infantile Hemangioma: Evaluation of Their Functional Capacity and Gene Expression Profile. Cells 2024; 13:254. [PMID: 38334645 PMCID: PMC10854919 DOI: 10.3390/cells13030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1β and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.
Collapse
Affiliation(s)
- Carlotta Abbà
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Alessia C. Codazzi
- Pediatric Cardiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.C.C.); (A.A.)
| | - Valeria Brazzelli
- Institute of Dermatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Antonia Apicella
- Pediatric Cardiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.C.C.); (A.A.)
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.B.)
| | - Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.B.)
| | - Savina Mannarino
- Pediatric Cardiology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Maria A. Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| |
Collapse
|
6
|
Zendedel E, Tayebi L, Nikbakht M, Hasanzadeh E, Asadpour S. Clinical Trials of Mesenchymal Stem Cells for the Treatment of COVID 19. Curr Stem Cell Res Ther 2024; 19:1055-1071. [PMID: 37815188 DOI: 10.2174/011574888x260032230925052240] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 10/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are being investigated as a treatment for a novel viral disease owing to their immunomodulatory, anti-inflammatory, tissue repair and regeneration characteristics, however, the exact processes are unknown. MSC therapy was found to be effective in lowering immune system overactivation and increasing endogenous healing after SARS-CoV-2 infection by improving the pulmonary microenvironment. Many studies on mesenchymal stem cells have been undertaken concurrently, and we may help speed up the effectiveness of these studies by collecting and statistically analyzing data from them. Based on clinical trial information found on clinicaltrials. gov and on 16 November 2020, which includes 63 clinical trials in the field of patient treatment with COVID-19 using MSCs, according to the trend of increasing studies in this field, and with the help of meta-analysis studies, it is possible to hope that the promise of MSCs will one day be realized. The potential therapeutic applications of MSCs for COVID-19 are investigated in this study.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Lobat Tayebi
- Marquett University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Mohammad Nikbakht
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Hasanzadeh
- Immunogenetics Research Center, Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
7
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
8
|
Shao F, Liu R, Tan X, Zhang Q, Ye L, Yan B, Zhuang Y, Xu J. MSC Transplantation Attenuates Inflammation, Prevents Endothelial Damage and Enhances the Angiogenic Potency of Endogenous MSCs in a Model of Pulmonary Arterial Hypertension. J Inflamm Res 2022; 15:2087-2101. [PMID: 35386223 PMCID: PMC8977867 DOI: 10.2147/jir.s355479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Pulmonary arterial hypertension (PAH) is a progressive and fatal pulmonary vascular disease initiated by endothelial dysfunction. Mesenchymal stromal cells (MSCs) have been shown to ameliorate PAH in various rodent models; however, these models do not recapitulate all the histopathological alterations observed in human PAH. Broiler chickens (Gallus gallus) can develop PAH spontaneously with neointimal and plexogenic arteriopathy strikingly similar to that in human patients. Herein, we examined the protective effects of MSC transplantation on the development of PAH in this avian model. Methods Mixed-sex broilers at 15 d of age were received 2×106 MSCs or PBS intravenously. One day later, birds were exposed to cool temperature with excessive salt in their drinking water to induce PAH. Cumulative morbidity from PAH and right-to-left ventricle ratio were recorded. Lung histologic features were evaluated for the presence of endothelial damage, endothelial proliferation and plexiform lesions. Expression of proinflammatory mediators and angiogenic factors in the lung was detected. Matrigel tube formation assay was performed to determine the angiogenic potential of endogenous MSCs. Results MSC administration reduced cumulative PAH morbidity and attenuated endothelial damage, plexiform lesions and production of inflammatory mediators in the lungs. No significant difference in the expression of paracrine angiogenic factors including VEGF-A and TGF-β was determined between groups, suggesting that they are not essential for the beneficial effect of MSC transplantation. Interestingly, the endogenous MSCs from birds receiving MSC transplantation demonstrated endothelial differentiatial capacity in vitro whereas those from the mock birds did not. Conclusion Our results support the therapeutic use of MSC transplantation for PAH treatment and suggest that exogenous MSCs produce beneficial effects through modulating inflammation and endogenous MSC-mediated vascular repair.
Collapse
Affiliation(s)
- Fengjin Shao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rui Liu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xun Tan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Qiaoyan Zhang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Lujie Ye
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bingxuan Yan
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhuang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| | - Jiaxue Xu
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Veterinary Medical Center, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Hainan Institute of Zhejiang University, Sanya, Hainan Province, People's Republic of China
| |
Collapse
|
9
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 PMCID: PMC8510528 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
Affiliation(s)
- Timothy D. Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
10
|
Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside. Int J Mol Sci 2021; 22:ijms222312874. [PMID: 34884679 PMCID: PMC8657735 DOI: 10.3390/ijms222312874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The mobilization of endothelial progenitor cells (EPCs) into circulation from bone marrow is well known to be present in several clinical settings, including acute coronary syndrome, heart failure, diabetes and peripheral vascular disease. The aim of this review was to explore the current literature focusing on the great opportunity that EPCs can have in terms of regenerative medicine.
Collapse
|
11
|
Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020; 11:437. [PMID: 33059757 PMCID: PMC7558244 DOI: 10.1186/s13287-020-01963-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has negatively impacted the global public health and the international economy; therefore, there is an urgent need for an effective therapy to treat COVID-19 patients. Mesenchymal stem cells (MSCs) have been proposed as an emerging therapeutic option for the SARS-CoV-2 infection. Recently, numerous clinical trials have been registered to examine the safety and efficacy of different types of MSCs and their exosomes for treating COVID-19 patients, with less published data on the mechanism of action. Although there is no approved effective therapy for COVID-19 as of yet, MSC therapies showed an improvement in the treatment of some COVID-19 patients. MSC’s therapeutic effect is displayed in their ability to reduce the cytokine storm, enhance alveolar fluid clearance, and promote epithelial and endothelial recovery; however, the safest and most effective route of MSC delivery remains unclear. The use of poorly characterized MSC products remains one of the most significant drawbacks of MSC-based therapy, which could theoretically promote the risk for thromboembolism. Optimizing the clinical-grade production of MSCs and establishing a consensus on registered clinical trials based on cell-product characterization and mode of delivery would aid in laying the foundation for a safe and effective therapy in COVID-19. In this review, we shed light on the mechanistic view of MSC therapeutic role based on preclinical and clinical studies on acute lung injury and ARDS; therefore, offering a unique correlation and applicability in COVID-19 patients. We further highlight the challenges and opportunities in the use of MSC-based therapy.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- Dermatology Department, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|