1
|
Grønvold L, van Dalum MJ, Striberny A, Manousi D, Ytrestøyl T, Mørkøre T, Boison S, Gjerde B, Jørgensen E, Sandve SR, Hazlerigg DG. Transcriptomic profiling of gill biopsies to define predictive markers for seawater survival in farmed Atlantic salmon. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39681120 DOI: 10.1111/jfb.16025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024]
Abstract
Wild Atlantic salmon migrate to sea following completion of a developmental process known as parr-smolt transformation (PST), which establishes a seawater (SW) tolerant phenotype. Effective imitation of this aspect of anadromous life history is a crucial aspect of commercial salmon production, with current industry practice being marred by significant losses during transition from the freshwater (FW) to SW phase of production. The natural photoperiodic control of PST can be mimicked by exposing farmed juvenile fish to a reduced duration photoperiod for at least 6 weeks before increasing the photoperiod in the last 1-2 months before SW transfer. While it is known that variations in this general protocol affect subsequent SW performance, there is no uniformly accepted industry standard; moreover, reliable prediction of SW performance from fish attributes in the FW phase remains a major challenge. Here we describe an experiment in which we took gill biopsies 1 week prior to SW transfer from 3000 individually tagged fish raised on three different photoperiod regimes during the FW phase. Biopsies were subjected to RNA profiling by Illumina sequencing, while individual fish growth and survival was monitored over 300 days in a SW cage environment, run as a common garden experiment. Using a random forest machine learning algorithm, we developed gene expression-based predictive models for initial survival and stunted growth in SW. Stunted growth phenotypes could not be predicted based on gill transcriptomes, but survival the first 40 days in SW could be predicted with moderate accuracy. While several previously identified marker genes contribute to this model, a surprisingly low weighting is ascribed to sodium potassium ATPase subunit genes, contradicting advocacy for their use as SW readiness markers. However, genes with photoperiod-history sensitive regulation were highly enriched among the genes with highest importance in the prediction model. This work opens new avenues for understanding and exploiting developmental changes in gill physiology during smolt development.
Collapse
Affiliation(s)
- Lars Grønvold
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mattis J van Dalum
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Anja Striberny
- Department of Production Biology, Nofima, Tromsø, Norway
| | - Domniki Manousi
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Trine Ytrestøyl
- Department of Nutrition and Feed Technology, Nofima, Tromsø, Norway
| | - Turid Mørkøre
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Bjarne Gjerde
- Department of Breeding and Genetics, Nofima, Ås, Norway
| | - Even Jørgensen
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Simen R Sandve
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - David G Hazlerigg
- Department of Arctic and Marine Biology, UiT - the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Harvey TN, Gillard GB, Røsæg LL, Grammes F, Monsen Ø, Vik JO, Hvidsten TR, Sandve SR. The genome regulatory landscape of Atlantic salmon liver through smoltification. PLoS One 2024; 19:e0302388. [PMID: 38648207 PMCID: PMC11034671 DOI: 10.1371/journal.pone.0302388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.
Collapse
Affiliation(s)
- Thomas N. Harvey
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth B. Gillard
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L. Røsæg
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Øystein Monsen
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
4
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Expression Analysis in Atlantic Salmon Liver Reveals miRNAs Associated with Smoltification and Seawater Adaptation. BIOLOGY 2022; 11:biology11050688. [PMID: 35625416 PMCID: PMC9138835 DOI: 10.3390/biology11050688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Smoltification is a developmental process that preadapts Atlantic salmon for a life in seawater. Suboptimal smoltification and poor timing of transfer to seawater is associated with increased mortality. MicroRNAs (miRNAs) are small non-coding genes. They regulate gene expression post-transcriptionally as part of the miRNA induce silencing complex (miRISC) where they guide miRISC to particular mRNAs (target genes). The aim of this study was to identify Atlantic salmon miRNAs expressed in liver that are associated with smoltification and adaptation to seawater as well as to predict their target genes. In total, 62 guide miRNAs were identified, and by their expression patterns they were clustered into three groups. Target gene predictions followed by gene enrichment analysis of the predicted targets indicated that the guide miRNAs were involved in post-transcriptional regulation of important smoltification associated biological processes. Some of these were energy metabolism, protein metabolism and transport, circadian rhythm, stress and immune response. Together, the results indicate that certain miRNAs are involved in the regulation of many of the important changes occurring in the liver during this developmental transition. Abstract Optimal smoltification is crucial for normal development, growth, and health of farmed Atlantic salmon in seawater. Here, we characterize miRNA expression in liver to reveal whether miRNAs regulate gene expression during this developmental transition. Expression changes of miRNAs and mRNAs was studied by small-RNA sequencing and microarray analysis, respectively. This revealed 62 differentially expressed guide miRNAs (gDE-miRNAs) that could be divided into three groups with characteristic dynamic expression patterns. Three of miRNA families are known as highly expressed in liver. A rare arm shift was observed during smoltification in the Atlantic salmon-specific novel-ssa-miR-16. The gDE-miRNAs were predicted to target 2804 of the genes revealing expression changes in the microarray analysis. Enrichment analysis revealed that targets were significantly enriched in smoltification-associated biological process groups. These included lipid and cholesterol synthesis, carbohydrate metabolism, protein metabolism and protein transport, immune system genes, circadian rhythm and stress response. The results indicate that gDE-miRNAs may regulate many of the changes associated with this developmental transition in liver. The results pave the way for validation of the predicted target genes and further study of gDE-miRNA and their targets by functional assays.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway; (A.S.); (S.R.)
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway; (A.K.); (T.-K.K.Ø.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway;
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway; (A.S.); (S.R.)
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway; (A.K.); (T.-K.K.Ø.)
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway; (A.S.); (S.R.)
- Correspondence:
| |
Collapse
|
5
|
Murzina SA, Voronin VP, Churova MV, Ruokolainen TR, Shulgina NS, Provotorov DS, Tikhonova OV, Nemova NN. The Effects of Low-Level Helium-Neon (He-Ne) Laser Irradiation on Lipids and Fatty Acids, and the Activity of Energetic Metabolism Enzymes and Proteome in the Blastula Stage and Underyearlings of the Atlantic Salmon Salmo salar: A Novel Approach in Salmonid Restoration Procedures in the North. Biomolecules 2022; 12:133. [PMID: 35053280 PMCID: PMC8774099 DOI: 10.3390/biom12010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022] Open
Abstract
The effect of He-Ne laser irradiation on fishery parameters as well as on biochemical state, including the lipids and fatty acids, the activity of energy metabolism enzymes and the proteome in the blastula stage and in underyearlings of wild Atlantic salmon after irradiation at the cleavage stage/early blastula (considered as the stages when the cell has a high potential for differentiation) was studied. Low mortality rates of eggs were determined during embryogenesis, as well as increased weight gain and lower morality rates of underyearlings in the experimental group. This is confirmed by changes in a number of interrelated indicators of lipid metabolism: a decrease in total lipids content, including diacylglycerols, triacylglycerols, cholesterol esters, and the phospholipids content remained unchanged. The embryos in the blastula stage (experimental group) had higher aerobic capacity and an increase in pentose phosphate pathway activity. The proteome profiles of eggs in the blastula stage were 131 proteins, of which 48 were significantly identified. The major protein was found to be phosvitin. The proteomes of underyearlings were represented by 2018 proteins, of which 49 were unique for the control and 39 for the experimental group. He-Ne laser irradiation had a strong effect on the contents of histone proteins.
Collapse
Affiliation(s)
- Svetlana A Murzina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| | - Viktor P Voronin
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| | - Maria V Churova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| | - Tatiana R Ruokolainen
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| | - Natalia S Shulgina
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| | - Dmitriy S Provotorov
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry (IBMC), 10 Pogodinskaya Street, 119121 Moscow, Russia
| | - Nina N Nemova
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences (IB KarRC RAS), 11 Pushkinskaya Street, 185910 Petrozavodsk, Russia
| |
Collapse
|
6
|
West AC, Mizoro Y, Wood SH, Ince LM, Iversen M, Jørgensen EH, Nome T, Sandve SR, Martin SAM, Loudon ASI, Hazlerigg DG. Immunologic Profiling of the Atlantic Salmon Gill by Single Nuclei Transcriptomics. Front Immunol 2021; 12:669889. [PMID: 34017342 PMCID: PMC8129531 DOI: 10.3389/fimmu.2021.669889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/05/2022] Open
Abstract
Anadromous salmonids begin life adapted to the freshwater environments of their natal streams before a developmental transition, known as smoltification, transforms them into marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process, involving radical remodeling of gill function to cope with the profound osmotic and immunological challenges of seawater (SW) migration. While prior work has highlighted the role of specialized "mitochondrion-rich" cells (MRCs) and accessory cells (ACs) in delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far more extensive than previously appreciated. Here, we use single-nuclei RNAseq to characterize the extent of cytological changes in the gill of Atlantic salmon during smoltification and SW transfer. We identify 20 distinct cell clusters, including known, but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-associated changes in gene expression and to describe how the cellular make-up of the gill changes through smoltification. As expected, we noted an increase in the proportion of seawater mitochondrion-rich cells, however, we also identify previously unknown reduction of several immune-related cell types. Overall, our results provide fresh detail of the cellular complexity in the gill and suggest that smoltification triggers unexpected immune reprogramming.
Collapse
Affiliation(s)
- Alexander C. West
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Yasutaka Mizoro
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège, Belgium
| | - Shona H. Wood
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Louise M. Ince
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marianne Iversen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Even H. Jørgensen
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Simen Rød Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Andrew S. I. Loudon
- Division of Diabetes, Endocrinology & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - David G. Hazlerigg
- Arctic seasonal timekeeping initiative (ASTI), Department of Arctic and Marine Biology, UiT – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Iversen M, Mulugeta T, West AC, Jørgensen EH, Martin SAM, Sandve SR, Hazlerigg D. Photoperiod-dependent developmental reprogramming of the transcriptional response to seawater entry in Atlantic salmon (Salmo salar). G3-GENES GENOMES GENETICS 2021; 11:6169000. [PMID: 33710311 PMCID: PMC8049429 DOI: 10.1093/g3journal/jkab072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/28/2021] [Indexed: 01/22/2023]
Abstract
The developmental transition of juvenile salmon from a freshwater resident morph (parr) to a seawater (SW) migratory morph (smolt), known as smoltification, entails a reorganization of gill function to cope with the altered water environment. Recently, we used RNAseq to characterize the breadth of transcriptional change which takes place in the gill in the FW phase of smoltification. This highlighted the importance of extended exposure to short, winter-like photoperiods (SP) followed by a subsequent increase in photoperiod for completion of transcriptional reprogramming in FW and efficient growth following transfer to SW. Here, we extend this analysis to examine the consequences of this photoperiodic history-dependent reprogramming for subsequent gill responses upon exposure to SW. We use RNAseq to analyze gill samples taken from fish raised on the photoperiod regimes we used previously and then challenged by SW exposure for 24 hours. While fish held on constant light (LL) throughout were able to hypo-osmoregulate during a 24 hours SW challenge, the associated gill transcriptional response was highly distinctive from that in fish which had experienced a 7-week period of exposure to SP followed by a return to LL (SPLL) and had consequently acquired the characteristics of fully developed smolts. Fish transferred from LL to SP, and then held on SP for the remainder of the study was unable to hypo-osmoregulate, and the associated gill transcriptional response to SW exposure featured many transcripts apparently regulated by the glucocorticoid stress axis and by the osmo-sensing transcription factor NFAT5. The importance of these pathways for the gill transcriptional response to SW exposure appears to diminish as a consequence of photoperiod mediated induction of the smolt phenotype, presumably reflecting preparatory developmental changes taking place during this process.
Collapse
Affiliation(s)
- Marianne Iversen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Teshome Mulugeta
- Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Alexander C West
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Even H Jørgensen
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Simen Rød Sandve
- Centre for Integrative Genetics, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT -The Arctic University of Norway, Tromsø NO-9037, Norway
| |
Collapse
|
8
|
Iversen M, Mulugeta T, Blikeng BG, West AC, Jørgensen EH, Rød Sandve S, Hazlerigg D. Correction: RNA profiling identifies novel, photoperiod-history dependent markers associated with enhanced saltwater performance in juvenile Atlantic salmon. PLoS One 2020; 15:e0237623. [PMID: 32764821 PMCID: PMC7413408 DOI: 10.1371/journal.pone.0237623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|