1
|
Andriato PDM, Baldin VP, de Almeida AL, Sampiron EG, de Vasconcelos SSN, Caleffi-Fercioli KR, Scodro RBDL, Meneguello JE, Maigret B, Kioshima ÉS, Cardoso RF. 1,3,4-oxadiazoles with effective anti-mycobacterial activity. Lett Appl Microbiol 2025; 78:ovaf029. [PMID: 40036865 DOI: 10.1093/lambio/ovaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
The search for new drugs to treat tuberculosis and nontuberculous mycobacteria (NTM)-caused diseases is still desired. This is the first study aimed at determining the activity of two innovative synthetic 1,3,4-oxadiazole molecules, (4-[cyclohexyl(ethyl) sulfamoyl]-N-[5-(furan-2-yl)-1,3,4-oxadiazol-2-yl]benzamide), namely LMM11, and ((N-cyclo-hexyl-N-ethylsulfamoil)-N-(5- (4-fluorophenyl)-1,3,4-oxadiazol-2-il) benzamide), namely LMM6, against Mycobacterium tuberculosis and nontuberculous mycobacteria, and their ability to present synergism in activity against M. tuberculosis when combined with anti-TB drugs. In vitro cytotoxicity studies were conducted in HeLa and VERO cells. The minimum inhibitory concentration (MIC) and combinatory effect were carried out in M. tuberculosis H37Rv and resistant isolates, NTM, and other genera of bacteria. The LMM6 and LMM11 MIC ranged from 8.27 to 33.07 µM and 15.58 to 70.30 µM in M. tuberculosis, respectively. LMM6 showed activity against M. smegmatis mc2 155 (8.25 μM), M. szulgai (2.05 μM), and M. kansasii (66.03 μM), while LMM11 showed activity against M. szulgai (8.77 μM), and M. smegmatis (70.19 μM). Synergism and modulatory activity of LMM6 and LMM11 with anti-TB drugs were observed, and they showed to be more selective for mycobacteria than HeLa and VERO cells. Both new oxadiazoles showed activity against mycobacteria, in fact, more pronounced against M. tuberculosis, and seem to bring light to the synthesis of new antimicobacterial.
Collapse
Affiliation(s)
- Patrícia de Mattos Andriato
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Vanessa Pietrowski Baldin
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Aryadne Larissa de Almeida
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Eloisa Gibin Sampiron
- Graduate Program in Health Sciences, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Sandra Sayuri Nakamura de Vasconcelos
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Katiany Rizzieri Caleffi-Fercioli
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Regiane Bertin de Lima Scodro
- Graduate Program in Health Sciences, State University of Maringá, Maringá, PR, 87020- 900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Jean Eduardo Meneguello
- Graduate Program in Health Sciences, State University of Maringá, Maringá, PR, 87020- 900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Bernard Maigret
- Emeritus Researcher, LORIA, Lorraine University, Nancy, 54506, France
| | - Érika Seki Kioshima
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| | - Rosilene Fressatti Cardoso
- Graduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
- Graduate Program in Health Sciences, State University of Maringá, Maringá, PR, 87020- 900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020- 900, Brazil
| |
Collapse
|
2
|
Hamdy R, Hamoda AM, Al-Khalifa M, Menon V, El-Awady R, Soliman SSM. Efficient selective targeting of Candida CYP51 by oxadiazole derivatives designed from plant cuminaldehyde. RSC Med Chem 2022; 13:1322-1340. [PMID: 36439981 PMCID: PMC9667785 DOI: 10.1039/d2md00196a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/19/2022] [Indexed: 07/24/2023] Open
Abstract
Candida infection represents a global threat with associated high resistance and mortality rate. Azoles such as the triazole drug fluconazole are the frontline therapy against invasive fungal infections; however, the emerging multidrug-resistant strains limit their use. Therefore, a series of novel azole UOSO1-15 derivatives were developed based on a modified natural scaffold to combat the evolved resistance mechanism and to provide improved safety and target selectivity. The antifungal screening against C. albicans and C. auris showed that UOSO10 and 12-14 compounds were the most potent derivatives. Among them, UOSO13 exhibited superior potent activity with MIC50 values of 0.5 and 0.8 μg mL-1 against C. albicans and C. auris compared to 25 and 600 μg mL-1 for fluconazole, respectively. UOSO13 displayed significant CaCYP51 enzyme inhibition activity in a concentration-dependent manner with an IC50 10-fold that of fluconazole, while exhibiting no activity against human CYP50 enzyme or toxicity to human cells. Furthermore, UOSO13 caused a significant reduction of Candida ergosterol content by 70.3% compared to a 35.6% reduction by fluconazole. Homology modeling, molecular docking, and molecular dynamics simulations of C. auris CYP51 enzyme indicated the stability and superiority of UOSO13. ADME prediction indicated that UOSO13 fulfils the drug-likeness criteria with good physicochemical properties.
Collapse
Affiliation(s)
- Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- Faculty of Pharmacy, Zagazig University Zagazig Egypt
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Medicine, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirate
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University Assiut-71526 Egypt
| | - Mariam Al-Khalifa
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Varsha Menon
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Pharmacy, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates +97165057472
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates
- College of Pharmacy, University of Sharjah P.O. Box 27272 Sharjah United Arab Emirates +97165057472
| |
Collapse
|
3
|
Hassan A, Khan AH, Saleem F, Ahmad H, Khan KM. A patent review on pharmaceutical and therapeutic applications of oxadiazole derivatives for the treatment of chronic diseases (2013-2021). Expert Opin Ther Pat 2022; 32:969-1001. [PMID: 35993146 DOI: 10.1080/13543776.2022.2116312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Oxadiazole is a unique class of heterocycle, possessing numerous important biomedical and therapeutic applications such as anti-bacterial, anti-cancer, anti-inflammatory, inhibitors for diverse enzymes, receptors modulators, and neuroprotective properties. The rapid development in the field of oxadiazole-containing structures is confirmed by the development of numerous clinical drugs such as doxazosin, nesapidil, pleconaril, fasiplon, ataluren, zibotentan, and prenoxdiazine as selected examples. AREAS COVERED This review provides a comprehensive overview of the range of biological applications of oxadiazole-containing drugs in a range of patents from 2013 to 2021. The information was collected from available data sources including SciFinder, Reaxys, MedLine, and Chemical Abstracts. EXPERT OPINION Oxadiazole is an established class of compounds with fascinating biological properties. The importance of oxadiazoles can be recognized by their enormous application in a wide spectrum of medicinal chemistry from anticancer, antibiotic, and antidiabetic to the use in agriculture and neuroprotection. For instance, the oxadiazole-based compounds have shown the ability to modulate a variety of receptors including the M4 receptor agonists, S1P1 receptor modulators, SSTR5 antagonists, orexin type-2 receptor agonists, liver X receptor agonists, and many more. This testifies to the special features associated with the oxadiazole scaffold making it a significant pharmacophore.
Collapse
Affiliation(s)
- Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320 Pakistan
| | - Abid Hussain Khan
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320 Pakistan
| | - Faiza Saleem
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75720, Pakistan
| | - Haseen Ahmad
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320 Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75720, Pakistan.,Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 31441, Dammam Saudi Arabia
| |
Collapse
|
4
|
Houshmandzad M, Sharifzadeh A, Khosravi A, Shokri H. Potential antifungal impact of citral and linalool administered individually or combined with fluconazole against clinical isolates of Candida krusei. JOURNAL OF HERBMED PHARMACOLOGY 2022. [DOI: 10.34172/jhp.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Candida krusei is recognized as a major fungal pathogen in patients with immunodeficiency disorders. The present study aimed at investigating the anticandidal activities of citral and linalool combined with fluconazole (FLZ) against FLZ-resistant C. krusei strains. Methods: Antifungal activities were evaluated by the broth microdilution (MD) method to determine the minimum inhibitory and fungicidal concentrations (namely, MICs and MFCs) according to the Clinical and Laboratory Standards Institute (CLSI) M27-A3 document. The interactions were further evaluated using fractional inhibitory concentration indices (FICIs) for combinations of citral+FLZ and linalool+FLZ, calculated from checkerboard MD assays. Results: The mean ± standard deviation (SD) MIC values of citral, linalool, and FLZ against the C. krusei isolates were 70.23 ± 17, 150 ± 38.73, and 74.66 ± 36.95 μg/mL, respectively. Some fungicidal activities were also observed for citral (2.5) and linalool (1.53) against the C. krusei isolates. The FICI values of citral+FLZ and linalool+FLZ for the C. krusei isolates ranged from 0.4 to 1.00 and 0.19 to 0.63, respectively. The additive and synergistic interactions of linalool + FLZ were further observed in 12 (57.1%) and 9 (42.9%) C. krusei isolates. However, there was an additive interaction for citral + FLZ in 17 (80.9%) isolates. They also showed a synergistic interaction in only four (19.1%) isolates. Moreover, linalool and citral plus FLZ did not have any antagonistic effect on any isolates. Conclusion: The study findings support the possible capabilities of citral and linalool, as anticandidal agents, and FLZ might be supplemented with citral and/or linalool for treating FLZ-resistant C. krusei infections.
Collapse
Affiliation(s)
- Mehdi Houshmandzad
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Aghil Sharifzadeh
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Alireza Khosravi
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hojjatollah Shokri
- Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
5
|
Oliveira VDS, da Cruz MM, Bezerra GS, Silva NESE, Nogueira FHA, Chaves GM, Sobrinho JLS, Mendonça-Junior FJB, Damasceno BPGDL, Converti A, de Lima ÁAN. Chitosan-Based Films with 2-Aminothiophene Derivative: Formulation, Characterization and Potential Antifungal Activity. Mar Drugs 2022; 20:103. [PMID: 35200633 PMCID: PMC8878255 DOI: 10.3390/md20020103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, films of chitosan and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (6CN), a 2-aminothiophene derivative with great pharmacological potential, were prepared as a system for a topical formulation. 6CN-chitosan films were characterized by physicochemical analyses, such as Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electronic microscopy (SEM). Additionally, the antifungal potential of the films was evaluated in vitro against three species of Candida (C. albicans, C. tropicalis, and C. parapsilosis). The results of the FTIR and thermal analysis showed the incorporation of 6CN in the polymer matrix. In the diffractogram, the 6CN-chitosan films exhibited diffraction halos that were characteristic of amorphous structures, while the micrographs showed that 6CN particles were dispersed in the chitosan matrix, exhibiting pores and cracks on the film surface. In addition, the results of antifungal investigation demonstrated that 6CN-chitosan films were effective against Candida species showing potential for application as a new antifungal drug.
Collapse
Affiliation(s)
- Verônica da Silva Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Meriângela Miranda da Cruz
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Gabriela Suassuna Bezerra
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Natan Emanuell Sobral e Silva
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Fernando Henrique Andrade Nogueira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | - Guilherme Maranhão Chaves
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| | | | | | | | - Attilio Converti
- Department of Civil, Chemical and Environment Engineering, Pole of Chemical Engineering, University of Genoa, I-16145 Genoa, Italy
| | - Ádley Antonini Neves de Lima
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (V.d.S.O.); (M.M.d.C.); (G.S.B.); (N.E.S.e.S.); (F.H.A.N.); (G.M.C.)
| |
Collapse
|
6
|
Sakita KM, Capoci IRG, Conrado PCV, Rodrigues-Vendramini FAV, Faria DR, Arita GS, Becker TCA, Bonfim-Mendonça PDS, Svidzinski TIE, Kioshima ES. Efficacy of Ebselen Against Invasive Aspergillosis in a Murine Model. Front Cell Infect Microbiol 2021; 11:684525. [PMID: 34249777 PMCID: PMC8260993 DOI: 10.3389/fcimb.2021.684525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Invasive aspergillosis is one of the major causes of morbidity and mortality among invasive fungal infections. The search for new antifungal drugs becomes imperative when existing drugs are not able to efficiently treat these infections. Ebselen, is an organoselenium compound, already successfully approved in clinical trials as a repositioned drug for the treatment of bipolar disorder and prevention of noise-induced hearing loss. In this study, we aimed to reposition ebselen for the treatment of invasive aspergillosis by showing ebselen effectiveness in a murine model. For this, BALB/c mice were immunosuppressed and infected systemically with Aspergillus fumigatus. Animals were divided and treated with ebselen, voriconazole, or drug-free control, for four days. The kidneys were used for CFU count and, histopathological and cytokine analysis. Ebselen was able to significantly reduce the fungal burden in the kidneys of infected mice with efficacy comparable with voriconazole treatment as both had reductions to the same extent. The absence of hyphae and intact kidney tissue structure observed in the histopathological sections analyzed from treated groups corroborate with the downregulation of IL-6 and TNF. In summary, this study brings for the first time in vivo evidence of ebselen efficacy against invasive aspergillosis. Despite these promising results, more animal studies are warranted to evaluate the potential role of ebselen as an alternative option for the management of invasive aspergillosis in humans.
Collapse
Affiliation(s)
- Karina Mayumi Sakita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Isis Regina Grenier Capoci
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | - Daniella Renata Faria
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Glaucia Sayuri Arita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | | | - Erika Seki Kioshima
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| |
Collapse
|
7
|
Ferreira PS, Victorelli FD, Rodero CF, Fortunato GC, Araújo VHS, Fonseca-Santos B, Bauab TM, Van Dijck P, Chorilli M. p-Coumaric acid loaded into liquid crystalline systems as a novel strategy to the treatment of vulvovaginal candidiasis. Int J Pharm 2021; 603:120658. [PMID: 33964336 DOI: 10.1016/j.ijpharm.2021.120658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/30/2022]
Abstract
Vulvovaginal candidiasis (VVC) is an extremely common type of vaginal infection, which is mainly caused by Candida albicans. However, non-albicans Candida species are frequently more resistant to conventional antifungal agents and can represent up to 30% of cases. Due to side effects and increasing antifungal resistance presented by standard therapies, phenolic compounds, such as p-coumaric acid (p-CA), have been studied as molecules from natural sources with potential antifungal activity. p-CA is a poorly water-soluble compound, thus loading it into liquid crystals (LCs) may increase its solubility and effectiveness on the vaginal mucosa. Thereby, here we propose the development of mucoadhesive liquid crystalline systems with controlled release of p-CA, for the local treatment of VVC. Developed LCs consisted of fixed oily and aqueous phases (oleic acid and cholesterol (5:1) and poloxamer dispersion 16%, respectively), changing only the surfactant phase components (triethanolamine oleate (TEA-Oleate) or triethanolamine (TEA), the latter producing TEA-Oleate molecules when mixed with oleic acid). Systems were also diluted in artificial vaginal mucus (1:1 ratio) to mimic the vaginal environment and verify possible structural changes on formulations upon exposure to the mucosa. From the characterization assays, p-CA loaded TEA-Oleate systems presented mucoadhesive profile, liquid crystalline mesophases, well-organized structures and pseudoplastic behaviour, which are desirable parameters for topical formulations. Moreover, they were able to control the release of p-CA throughout the 12 h assay, as well as decrease its permeation into the vaginal mucosa. p-CA showed antifungal activity in vitro against reference strains of C. albicans (SC5314), C. glabrata (ATCC 2001) and C. krusei (ATCC 6258), and exhibited higher eradication of mature biofilms than amphotericin B and fluconazole. In vivo experiments demonstrated that the formulations reduced the presence of filamentous forms in the vaginal lavages and provided an improvement in swelling and redness present in the mice vaginal regions. Altogether, here we demonstrated the potential and feasibility of using p-CA loaded liquid crystalline systems as a mucoadhesive drug delivery system for topical treatment of VVC.
Collapse
Affiliation(s)
- P S Ferreira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| | - F D Victorelli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - C F Rodero
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - G C Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - V H S Araújo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - B Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - T M Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - P Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium; VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - M Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
Faria DR, Melo RC, Arita GS, Sakita KM, Rodrigues-Vendramini FAV, Capoci IRG, Becker TCA, Bonfim-Mendonça PDS, Felipe MSS, Svidzinski TIE, Kioshima ES. Fungicidal Activity of a Safe 1,3,4-Oxadiazole Derivative Against Candida albicans. Pathogens 2021; 10:pathogens10030314. [PMID: 33800117 PMCID: PMC8001722 DOI: 10.3390/pathogens10030314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Candida albicans is the most common species isolated from nosocomial bloodstream infections. Due to limited therapeutic arsenal and increase of drug resistance, there is an urgent need for new antifungals. Therefore, the antifungal activity against C. albicans and in vivo toxicity of a 1,3,4-oxadiazole compound (LMM6) was evaluated. This compound was selected by in silico approach based on chemical similarity. LMM6 was highly effective against several clinical C. albicans isolates, with minimum inhibitory concentration values ranging from 8 to 32 µg/mL. This compound also showed synergic effect with amphotericin B and caspofungin. In addition, quantitative assay showed that LMM6 exhibited a fungicidal profile and a promising anti-biofilm activity, pointing to its therapeutic potential. The evaluation of acute toxicity indicated that LMM6 is safe for preclinical trials. No mortality and no alterations in the investigated parameters were observed. In addition, no substantial alteration was found in Hippocratic screening, biochemical or hematological analyzes. LMM6 (5 mg/kg twice a day) was able to reduce both spleen and kidneys fungal burden and further, promoted the suppresses of inflammatory cytokines, resulting in infection control. These preclinical findings support future application of LMM6 as potential antifungal in the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Daniella Renata Faria
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Raquel Cabral Melo
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Glaucia Sayuri Arita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Karina Mayumi Sakita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Isis Regina Grenier Capoci
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Tania Cristina Alexandrino Becker
- Laboratory of General Pathology, Department of Basic Health Sciences, State University of Maringá, Maringá (UEM), Maringá, Paraná 87020-900, Brazil;
| | - Patrícia de Souza Bonfim-Mendonça
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| | - Terezinha Inez Estivalet Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Erika Seki Kioshima
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
- Correspondence: or ; Tel.: +55-44-3011-4810
| |
Collapse
|
9
|
Seki Kioshima E, de Souza Bonfim de Mendonça P, de Melo Teixeira M, Grenier Capoci IR, Amaral A, Vilugron Rodrigues-Vendramini FA, Lauton Simões B, Rodrigues Abadio AK, Fernandes Matos L, Soares Felipe MS. One Century of Study: What We Learned about Paracoccidioides and How This Pathogen Contributed to Advances in Antifungal Therapy. J Fungi (Basel) 2021; 7:106. [PMID: 33540749 PMCID: PMC7913102 DOI: 10.3390/jof7020106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 02/08/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a notable fungal infection restricted to Latin America. Since the first description of the disease by Lutz up to the present day, Brazilian researchers have contributed to the understanding of the life cycle of this pathogen and provided the possibility of new targets for antifungal therapy based on the structural and functional genomics of Paracoccidioides. In this context, in silico approaches have selected molecules that act on specific targets, such as the thioredoxin system, with promising antifungal activity against Paracoccidioides. Some of these are already in advanced development stages. In addition, the application of nanostructured systems has addressed issues related to the high toxicity of conventional PCM therapy. Thus, the contribution of molecular biology and biotechnology to the advances achieved is unquestionable. However, it is still necessary to transcend the boundaries of synthetic chemistry, pharmaco-technics, and pharmacodynamics, aiming to turn promising molecules into newly available drugs for the treatment of fungal diseases.
Collapse
Affiliation(s)
- Erika Seki Kioshima
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Patrícia de Souza Bonfim de Mendonça
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília (UnB), Brasilia, Distrito Federal 70910-900, Brazil;
| | - Isis Regina Grenier Capoci
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - André Amaral
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74690-900, Brazil;
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Bruna Lauton Simões
- Program in Biosciences and Pathophysiology, Department of Clinical Analysis and Biomedicine, State University of Maringa (UEM), Maringa, Parana 87020-900, Brazil; (P.d.S.B.d.M.); (I.R.G.C.); (F.A.V.R.-V.); (B.L.S.)
| | - Ana Karina Rodrigues Abadio
- Faculty of Agricultural Social Sciences, Mato Grosso State University, Nova Mutum, Mato Grosso 78450-000, Brazil;
| | - Larissa Fernandes Matos
- Faculty of Ceilandia, University of Brasília (UnB), Brasília, Distrito Federal 72220-275, Brazil;
- Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| |
Collapse
|