1
|
Zaluski J, Bassetto M, Kiser PD, Tochtrop GP. Advances and therapeutic opportunities in visual cycle modulation. Prog Retin Eye Res 2025; 106:101360. [PMID: 40280538 DOI: 10.1016/j.preteyeres.2025.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The visual cycle is a metabolic pathway that enables continuous vision by regenerating the 11-cis-retinal chromophore for photoreceptors opsins. Although integral to normal visual function, the flux of retinoids through this cycle can contribute to a range of retinal pathologies, including Stargardt disease, age-related macular degeneration, and diabetic retinopathy. In such conditions, intermediates and byproducts of the visual cycle, such as bisretinoid components of lipofuscin, can accumulate, concomitant with cellular damage and eventual photoreceptor loss. This has inspired efforts to modulate the visual cycle, aiming to slow or prevent the formation of these toxic intermediates and thus preserve retinal structure and function. Over the past two decades, multiple strategies to modulate the visual cycle have emerged. These include both intrinsic approaches, targeting key enzymes, retinoid-binding proteins, or receptors within the pigment epithelium or photoreceptors (e.g., RPE65, CRBP1, and rhodopsin inhibitors/antagonists) and extrinsic strategies that indirectly alter retinoid availability within the retina (e.g., RBP4 antagonists). Many of these agents have shown promise in animal models of visual cycle-associated retinal diseases, reducing pathological changes, and improving retinal survival. Several have advanced into clinical studies, although none are currently FDA-approved. Challenges remain in optimizing drug specificity and duration of action while minimizing side effects such as nyctalopia. In this review, we comprehensively examine current and emerging visual cycle modulators, discuss their medicinal chemistry, mechanisms of action, efficacy in preclinical and clinical studies, and highlight future opportunities for drug discovery aimed at safely and effectively preserving vision through modulation of this biochemical pathway.
Collapse
Affiliation(s)
- Jordan Zaluski
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marco Bassetto
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translational Vision Research, School of Medicine, University of California- Irvine, Irvine, CA, 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA, 90822, USA; Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California - Irvine, Irvine, CA, 92697, USA.
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
3
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
4
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
5
|
Cioffi CL, Raja A, Muthuraman P, Jayaraman A, Jayakumar S, Varadi A, Racz B, Petrukhin K. Identification of Transthyretin Tetramer Kinetic Stabilizers That Are Capable of Inhibiting the Retinol-Dependent Retinol Binding Protein 4-Transthyretin Interaction: Potential Novel Therapeutics for Macular Degeneration, Transthyretin Amyloidosis, and Their Common Age-Related Comorbidities. J Med Chem 2021; 64:9010-9041. [PMID: 34138572 DOI: 10.1021/acs.jmedchem.1c00099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset. Drawing from clinically investigated AG10, we designed a constrained congener (14) that exhibits excellent TTR tetramer binding potency, prevents TTR aggregation in a gel-based assay, and possesses desirable pharmacokinetics in mice. Additionally, 14 significantly lowers murine serum retinol binding protein 4 (RBP4) levels despite a lack of binding at that protein's all-trans-retinol site. We hypothesize that kinetic stabilization of TTR tetramers via 14 is allosterically hindering all-trans-retinol-dependent RBP4-TTR tertiary complex formation and that the compound could present ancillary therapeutic utility for indications treated with RBP4 antagonists, such as macular degeneration.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Aravindan Jayaraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Srinivasan Jayakumar
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
6
|
Cioffi CL, Muthuraman P, Raja A, Varadi A, Racz B, Petrukhin K. Discovery of Bispecific Antagonists of Retinol Binding Protein 4 That Stabilize Transthyretin Tetramers: Scaffolding Hopping, Optimization, and Preclinical Pharmacological Evaluation as a Potential Therapy for Two Common Age-Related Comorbidities. J Med Chem 2020; 63:11054-11084. [DOI: 10.1021/acs.jmedchem.0c00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher L. Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|