1
|
Effiong ME, Bella-Omunagbe M, Afolabi IS, Chinedu SN. In silico evaluation of potential breast cancer receptor antagonists from GC-MS and HPLC identified compounds in Pleurotus ostreatus extracts. RSC Adv 2024; 14:23744-23771. [PMID: 39131188 PMCID: PMC11310660 DOI: 10.1039/d4ra03832k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction: Pharmacotherapeutic targets for breast cancer include the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (EGFR). Inhibitors of these receptors could be interesting therapeutic candidates for the treatment and management of breast cancer (BC). Aim: This study used GC-MS and HPLC to identify bioactive compounds in Pleurotus ostreatus (P. ostreatus) extracts and applied in silico methods to identify potent EGFR, ER, and PR inhibitors from the compounds as potential drug candidates. Method: GC-MS and HPLC were used to identify bioactive chemicals in P. ostreatus extracts of aqueous (PO-A), methanol (PO-M), ethanol (PO-E), chloroform (PO-C), and n-hexane (PO-H). The ER, PR, and EGFR model optimization and molecular docking of compounds/control inhibitors in the binding pocket were simulated using AutoDock Vina in PyRx. The drug-likeness, pharmacokinetic, and pharmacodynamic features of prospective docking leads were all anticipated. Result: The results indicated the existence of 29 compounds in PO-A, 36 compounds in PO-M and PO-E, 42 compounds in PO-C, and 22 compounds in PO-H extracts. With ER, only o-tolylamino-acetic acid (4-nitro-benzylidene)-hydrazide (-7.5 kcal mol-1) from the ethanolic extract could bind to the receptor. PR and EGFR, on the other hand, identified several compounds with higher binding affinities than the control. Ergotaman-3',6',18-trione (-8.1 kcal mol-1), 5,10-diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d]pyrazine (-7.8 kcal mol-1) from the aqueous extract; o-tolylamino-acetic acid (4-nitro-benzylidene)-hydrazide (-8.4 kcal mol-1) from the ethanolic extract had better binding affinity compared to progesterone (-7.7 kcal mol-1). Likewise, ergotaman-3',6',18-trione (-9.7 kcal mol-1) from the aqueous extract and phenol, 2,4-bis(1,1-dimethyl ethyl) (-8.2 kcal mol-1) from the chloroform extract had better binding affinities compared to the control, gefitinib (-7.9 kcal mol-1) with regards to EGFR. None of the PO-H or PO-M extracts outperformed the control for any of the proteins. Phenols and flavonoids such as quercetin, luteolin, rutin, chrysin, apigenin, ellagic acid, and naringenin had better binding affinity to PR and EGFR compared to their control. Conclusion: The identified compounds in the class of phenols and flavonoids were better lead molecules due to their ability to strongly bind to the proteins' receptors. These compounds showed promising drug-like properties; they could be safe and new leads for creating anticancer medicines.
Collapse
Affiliation(s)
- Magdalene Eno Effiong
- Department of Biochemistry, College of Science and Technology, Covenant University Canaanland, PMB 1023 Ota Ogun State Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE) Nigeria
| | - Mercy Bella-Omunagbe
- Department of Biochemistry, College of Science and Technology, Covenant University Canaanland, PMB 1023 Ota Ogun State Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE) Nigeria
| | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University Canaanland, PMB 1023 Ota Ogun State Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University Canaanland, PMB 1023 Ota Ogun State Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, College of Science and Technology, Covenant University Canaanland, PMB 1023 Ota Ogun State Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University Canaanland, PMB 1023 Ota Ogun State Nigeria
| |
Collapse
|
2
|
Fomin V, Bazhenov S, Kononchuk O, Matveeva V, Zarubina A, Spiridonov S, Manukhov I. Photorhabdus lux-operon heat shock-like regulation. Heliyon 2023; 9:e14527. [PMID: 36950606 PMCID: PMC10025913 DOI: 10.1016/j.heliyon.2023.e14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
For decades, transcription of Photorhabdus luminescens lux-operon was considered being constitutive. Therefore, this lux-operon has been used for measurements in non-specific bacterial luminescent biosensors. Here, the expression of Photorhabdus lux-operon under high temperature was studied. The expression was researched in the natural strain Photorhabdus temperata and in the heterologous system of Escherichia coli. P. temperata FV2201 bacterium was isolated from soil in the Moscow region (growth optimum 28 °C). We showed that its luminescence significantly increases when the temperature rises to 34 °C. The increase in luminescence is associated with an increase in the transcription of luxCDABE genes, which was confirmed by RT-PCR. The promoter of the lux-operon of the related bacterium P. luminescens ZM1 from the forests of Moldova, being cloned in the heterologous system of E. coli, is activated when the temperature rises from room temperature to 42 °C. When heat shock is caused by ethanol addition, transcription of lux-operon increases only in the natural strain of P. temperata, but not in the heterologous system of E. coli cells. In addition, the activation of the lux-operon of P. luminescens persists in E. coli strains deficient in both the rpoH and rpoE genes. These results indicate the presence of sigma 32 and sigma 24 independent heat-shock-like mechanism of regulation of the lux-operon of P. luminescens in the heterologous E. coli system.
Collapse
Affiliation(s)
- V.V. Fomin
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - S.V. Bazhenov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - O.V. Kononchuk
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Laboratory of Microbiology, BIOTECH University, Volokolamskoe Highway 11, Moscow 125080, Russian Federation
| | - V.O. Matveeva
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
| | - A.P. Zarubina
- Biological Faculty, Lomonosov Moscow State University, Vorob’evy Gory, Moscow, 119992, Russian Federation
| | - S.E. Spiridonov
- Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii Prospect, 33, Moscow, 119071, Russian Federation
| | - I.V. Manukhov
- Laboratory of Molecular Genetics, Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprudny, Moscow Region, 141700, Russian Federation
- Corresponding author.
| |
Collapse
|
3
|
New temperature-switchable acyl homoserine lactone-regulated expression vector. Appl Microbiol Biotechnol 2023; 107:807-818. [PMID: 36580089 DOI: 10.1007/s00253-022-12341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022]
Abstract
Bacterial expression systems play an indispensable role in the biosynthesis of recombinant proteins. Different proteins and the tasks associated with them may require different systems. The purpose of this work is to make an expression vector that allows switching on and off the expression of the target gene during cell incubation. Several expression vectors for use in Escherichia coli cells were developed using elements of the luxR/luxI type quorum sensing system of psychrophilic bacterium Aliivibrio logei. These vectors contain A. logei luxR2 and (optionally) luxI genes and LuxR2-regulated promoter, under the control of which a target gene is intended to be inserted. The synthesis of the target protein depends directly on the temperature: gene expression starts when the temperature drops to 22 °C and stops when it rises to 37 °C, which makes it possible to fix the desired amount of the target protein in the cell. At the same time, the expression of the target gene at a low temperature depends on the concentration of the autoinducer (L-homoserine N-(3-oxohexanoyl)-lactone, AI) in the culture medium in a wide range from 1 nM to 10 μM, which makes it possible to smoothly regulate the rate of target protein synthesis. Presence of luxI in the vector provides the possibility of autoinduction. Constructed expression vectors were tested with gfp, ardA, and ardB genes. At maximum, we obtained the target protein in an amount of up to 33% of the total cellular protein. KEY POINTS: • A. logei quorum sensing system elements were applied in new expression vectors • Expression of target gene is inducible at 22 °C and it is switched off at 37 °C • Target gene expression at 22 °C is tunable by use different AI concentrations.
Collapse
|
4
|
Novoyatlova US, Kessenikh AG, Kononchuk OV, Bazhenov SV, Fomkin AA, Kudryavtseva AA, Shorunov SV, Bermeshev MV, Manukhov IV. Genotoxic Effect of Dicyclopropanated 5-Vinyl-2-Norbornene. BIOSENSORS 2022; 13:57. [PMID: 36671892 PMCID: PMC9855359 DOI: 10.3390/bios13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Dicyclopropanated 5-vinyl-2-norbornene (dcpVNB) is a strained polycyclic hydrocarbon compound with a high energy content, which makes it promising for the development of propellant components based on it. In this work, the genotoxic properties of dcpVNB were studied using whole-cell lux-biosensors based on Escherichia coli and Bacillus subtilis. It was shown that the addition of dcpVNB to bacterial cells leads to the appearance of DNA damage inducing the SOS response and Dps expression with slight activation of the OxyR-mediated response to oxidative stress. The highest toxic effect of dcpVNB is detected by the following lux-biosensors: E. coli pColD-lux, E. coli pDps, B. subtilis pNK-DinC, and B. subtilis pNK-MrgA, in which the genes of bacterial luciferases are transcriptionally fused to the corresponding promoters: Pcda, Pdps, PdinC, and PmrgA. It was shown that lux-biosensors based on B. subtilis, and E. coli are almost equally sensitive to dcpVNB, which indicates the same permeability to this compound of cell wall of Gram-positive and Gram-negative bacteria. The activation of Pdps after dcpVNB addition maintains even in oxyR mutant E. coli strains, which means that the Pdps induction is only partially determined by the OxyR/S regulon. Comparison of specific stress effects caused by dcpVNB and 2-ethyl(bicyclo[2.2.1]heptane) (EBH), characterized by the absence of cyclopropanated groups, shows that structural changes in hydrocarbons could significantly change the mode of toxicity.
Collapse
Affiliation(s)
- Uliana S. Novoyatlova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Andrei G. Kessenikh
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | - Olga V. Kononchuk
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Laboratory for Microbiology, BIOTECH University, 125080 Moscow, Russia
| | - Sergey V. Bazhenov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Faculty of Physics, HSE University, 109028 Moscow, Russia
| | - Alexander A. Fomkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anna A. Kudryavtseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Faculty of Physics, HSE University, 109028 Moscow, Russia
- Federal Research Center of Biological Systems and Agro-Technologies of RAS, 460000 Orenburg, Russia
| | - Sergey V. Shorunov
- Topchiev Institute of Petrochemical Synthesis, RAS, 119071 Moscow, Russia
| | - Maxim V. Bermeshev
- Topchiev Institute of Petrochemical Synthesis, RAS, 119071 Moscow, Russia
| | - Ilya V. Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
5
|
Sudarev VV, Dolotova SM, Bukhalovich SM, Bazhenov SV, Ryzhykau YL, Uversky VN, Bondarev NA, Osipov SD, Mikhailov AE, Kuklina DD, Murugova TN, Manukhov IV, Rogachev AV, Gordeliy VI, Gushchin IY, Kuklin AI, Vlasov AV. Ferritin self-assembly, structure, function, and biotechnological applications. Int J Biol Macromol 2022; 224:319-343. [DOI: 10.1016/j.ijbiomac.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
6
|
Anti-Inflammatory Activity of Soluble Epoxide Hydrolase Inhibitors Based on Selenoureas Bearing an Adamantane Moiety. Int J Mol Sci 2022; 23:ijms231810710. [PMID: 36142611 PMCID: PMC9501280 DOI: 10.3390/ijms231810710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The inhibitory potency of the series of inhibitors of the soluble epoxide hydrolase (sEH) based on the selenourea moiety and containing adamantane and aromatic lipophilic groups ranges from 34.3 nM to 1.2 μM. The most active compound 5d possesses aliphatic spacers between the selenourea group and lipophilic fragments. Synthesized compounds were tested against the LPS-induced activation of primary murine macrophages. The most prominent anti-inflammatory activity, defined as a suppression of nitric oxide synthesis by LPS-stimulated macrophages, was demonstrated for compounds 4a and 5b. The cytotoxicity of the obtained substances was studied using human neuroblastoma and fibroblast cell cultures. Using these cell assays, the cytotoxic concentration for 4a was 4.7–18.4 times higher than the effective anti-inflammatory concentration. The genotoxicity and the ability to induce oxidative stress was studied using bacterial lux-biosensors. Substance 4a does not exhibit genotoxic properties, but it can cause oxidative stress at concentrations above 50 µM. Put together, the data showed the efficacy and safety of compound 4a.
Collapse
|
7
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
8
|
Mazanko MS, Prazdnova EV, Kulikov MP, Maltseva TA, Rudoy DV, Chikindas ML. Antioxidant and antimutagenic properties of probiotic Lactobacilli determined using LUX-biosensors. Enzyme Microb Technol 2021; 155:109980. [PMID: 35032859 DOI: 10.1016/j.enzmictec.2021.109980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022]
Abstract
The initial screening of probiotic strains in vitro, carried out by different methods, may omit strains that are promising from the point of view of biotechnology or, conversely, mark as promising strains those that will lose activity when transferred in vivo. It is known that the release of metabolites by probiotic bacteria, in particular, lactobacilli, is highly dependent on the biochemical context. In this work, we modified the method that was previously successfully used for the selection of probiotics for poultry, based on their antioxidant and DNA-protective properties. A comparison was made of this activity on standard media and on an artificial intestinal medium that mimics the intestines of a bird. As a result, three Lactobacillus strains were selected, which not only exhibit antioxidant and DNA-protective properties but also do not lose these activities in an artificial intestinal medium.
Collapse
Affiliation(s)
- M S Mazanko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia; Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - E V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia; Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.
| | - M P Kulikov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - T A Maltseva
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - D V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - M L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia; Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, New Jersey, USA; I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
9
|
Constructing of Bacillus subtilis-Based Lux-Biosensors with the Use of Stress-Inducible Promoters. Int J Mol Sci 2021; 22:ijms22179571. [PMID: 34502476 PMCID: PMC8431380 DOI: 10.3390/ijms22179571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we present a new lux-biosensor based on Bacillus subtilis for detecting of DNA-tropic and oxidative stress-causing agents. Hybrid plasmids pNK-DinC, pNK-AlkA, and pNK-MrgA have been constructed, in which the Photorhabdus luminescens reporter genes luxABCDE are transcribed from the stress-inducible promoters of B. subtilis: the SOS promoter PdinC, the methylation-specific response promoter PalkA, and the oxidative stress promoter PmrgA. The luminescence of B. subtilis-based biosensors specifically increases in response to the appearance in the environment of such common toxicants as mitomycin C, methyl methanesulfonate, and H2O2. Comparison with Escherichia coli-based lux-biosensors, where the promoters PdinI, PalkA, and Pdps were used, showed generally similar characteristics. However, for B. subtilis PdinC, a higher response amplitude was observed, and for B. subtilis PalkA, on the contrary, both the amplitude and the range of detectable toxicant concentrations were decreased. B. subtilis PdinC and B. subtilis PmrgA showed increased sensitivity to the genotoxic effects of the 2,2'-bis(bicyclo [2.2.1] heptane) compound, which is a promising propellant, compared to E. coli-based lux-biosensors. The obtained biosensors are applicable for detection of toxicants introduced into soil. Such bacillary biosensors can be used to study the differences in the mechanisms of toxicity against Gram-positive and Gram-negative bacteria.
Collapse
|
10
|
Kessenikh A, Gnuchikh E, Bazhenov S, Bermeshev M, Pevgov V, Samoilov V, Shorunov S, Maksimov A, Yaguzhinsky L, Manukhov I. Correction: Genotoxic effect of 2,2'-bis(bicyclo[2.2.1] heptane) on bacterial cells. PLoS One 2021; 16:e0248251. [PMID: 33657177 PMCID: PMC7928516 DOI: 10.1371/journal.pone.0248251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|