1
|
Galperin MY, Vera Alvarez R, Karamycheva S, Makarova KS, Wolf Y, Landsman D, Koonin EV. COG database update 2024. Nucleic Acids Res 2025; 53:D356-D363. [PMID: 39494517 PMCID: PMC11701660 DOI: 10.1093/nar/gkae983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
The Clusters of Orthologous Genes (COG) database, originally created in 1997, has been updated to reflect the constantly growing collection of completely sequenced prokaryotic genomes. This update increased the genome coverage from 1309 to 2296 species, including 2103 bacteria and 193 archaea, in most cases, with a single representative genome per genus. This set covers all genera of bacteria and archaea that included organisms with 'complete genomes' as per NCBI databases in November 2023. The number of COGs has been expanded from 4877 to 4981, primarily by including protein families involved in bacterial protein secretion. Accordingly, COG pathways and functional groups now include secretion systems of types II through X, as well as Flp/Tad and type IV pili. These groupings allow straightforward identification and examination of the prokaryotic lineages that encompass-or lack-a particular secretion system. Other developments include improved annotations for the rRNA and tRNA modification proteins, multi-domain signal transduction proteins, and some previously uncharacterized protein families. The new version of COGs is available at https://www.ncbi.nlm.nih.gov/research/COG, as well as on the NCBI FTP site https://ftp.ncbi.nlm.nih.gov/pub/COG/, which also provides archived data from previous COG releases.
Collapse
Affiliation(s)
- Michael Y Galperin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Roberto Vera Alvarez
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Svetlana Karamycheva
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - David Landsman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
2
|
Rupareliya M, Shende P. Influence of RNA Methylation on Cancerous Cells: A Prospective Approach for Alteration of In Vivo Cellular Composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:79-103. [PMID: 39259424 DOI: 10.1007/5584_2024_820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
RNA methylation is a dynamic and ubiquitous post-transcriptional modification that plays a pivotal role in regulating gene expression in various conditions like cancer, neurological disorders, cardiovascular diseases, viral infections, metabolic disorders, and autoimmune diseases. RNA methylation manifests across diverse RNA species including messenger RNA (mRNA), ribosomal RNA (rRNA), and transfer RNA (tRNA), exerting pivotal roles in gene expression regulation and various biological phenomena. Aberrant activity of writer, eraser, and reader proteins enables dysregulated methylation landscape across diverse malignancy transcriptomes, frequently promoting cancer pathogenesis. Numerous oncogenic drivers, tumour suppressors, invasion/metastasis factors, and signalling cascade components undergo methylation changes that modulate respective mRNA stability, translation, splicing, transport, and protein-RNA interactions accordingly. Functional studies confirm methylation-dependent alterations drive proliferation, survival, motility, angiogenesis, stemness, metabolism, and therapeutic evasion programs systemically. Methyltransferase overexpression typifies certain breast, liver, gastric, and other carcinomas correlating with adverse clinical outcomes like diminished overall survival. Mapping efforts uncover nodal transcripts for targeted drug development against hyperactivated regulators including METTL3. Some erasers and readers also suitable lead candidates based on apparent synthetic lethality. Proteomic screens additionally highlight relevant methylation-sensitive effector pathways amenable to combinatorial blockade, reversing compensatory signalling mechanisms that facilitate solid tumour progression. Quantifying global methylation burdens and responsible enzymes clinically predicts patient prognosis, risk stratification for adjuvant therapy, and overall therapeutic responsiveness.
Collapse
Affiliation(s)
- Manali Rupareliya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India.
| |
Collapse
|
3
|
Sun J, Hwang P, Sakkas ED, Zhou Y, Perez L, Dave I, Kwon JB, McMahon AE, Wichman M, Raval M, Scopino K, Krizanc D, Thayer KM, Weir MP. GNN Codon Adjacency Tunes Protein Translation. Int J Mol Sci 2024; 25:5914. [PMID: 38892101 PMCID: PMC11172435 DOI: 10.3390/ijms25115914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The central dogma treats the ribosome as a molecular machine that reads one mRNA codon at a time as it adds each amino acid to its growing peptide chain. However, this and previous studies suggest that ribosomes actually perceive pairs of adjacent codons as they take three-nucleotide steps along the mRNA. We examined GNN codons, which we find are surprisingly overrepresented in eukaryote protein-coding open reading frames (ORFs), especially immediately after NNU codons. Ribosome profiling experiments in yeast revealed that ribosomes with NNU at their aminoacyl (A) site have particularly elevated densities when NNU is immediately followed (3') by a GNN codon, indicating slower mRNA threading of the NNU codon from the ribosome's A to peptidyl (P) sites. Moreover, if the assessment was limited to ribosomes that have only recently arrived at the next codon, by examining 21-nucleotide ribosome footprints (21-nt RFPs), elevated densities were observed for multiple codon classes when followed by GNN. This striking translation slowdown at adjacent 5'-NNN GNN codon pairs is likely mediated, in part, by the ribosome's CAR surface, which acts as an extension of the A-site tRNA anticodon during ribosome translocation and interacts through hydrogen bonding and pi stacking with the GNN codon. The functional consequences of 5'-NNN GNN codon adjacency are expected to influence the evolution of protein coding sequences.
Collapse
Affiliation(s)
- Joyce Sun
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Pete Hwang
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Eric D. Sakkas
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Yancheng Zhou
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Luis Perez
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Ishani Dave
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Jack B. Kwon
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Audrey E. McMahon
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Mia Wichman
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Mitsu Raval
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Kristen Scopino
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
| | - Daniel Krizanc
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA; (D.K.); (K.M.T.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Kelly M. Thayer
- Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA; (D.K.); (K.M.T.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
- Department of Chemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Michael P. Weir
- Department of Biology, Wesleyan University, Middletown, CT 06459, USA; (J.S.); (P.H.); (E.D.S.); (Y.Z.); (L.P.); (I.D.); (J.B.K.); (A.E.M.); (M.W.); (M.R.)
- College of Integrative Sciences, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
4
|
Wang Z, Xu X, Li X, Fang J, Huang Z, Zhang M, Liu J, Qiu X. Investigations of Single-Subunit tRNA Methyltransferases from Yeast. J Fungi (Basel) 2023; 9:1030. [PMID: 37888286 PMCID: PMC10608323 DOI: 10.3390/jof9101030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
tRNA methylations, including base modification and 2'-O-methylation of ribose moiety, play critical roles in the structural stabilization of tRNAs and the fidelity and efficiency of protein translation. These modifications are catalyzed by tRNA methyltransferases (TRMs). Some of the TRMs from yeast can fully function only by a single subunit. In this study, after performing the primary bioinformatic analyses, the progress of the studies of yeast single-subunit TRMs, as well as the studies of their homologues from yeast and other types of eukaryotes and the corresponding TRMs from other types of organisms was systematically reviewed, which will facilitate the understanding of the evolutionary origin of functional diversity of eukaryotic single-subunit TRM.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiangbin Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Mengli Zhang
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Jiameng Liu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- Ministry of Education Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ningbo 315800, China; (Z.W.); (X.L.); (J.F.); (Z.H.); (M.Z.); (J.L.)
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China;
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Centre, Ningbo University, Ningbo 315800, China
| |
Collapse
|
5
|
Imbriano C, Moresi V, Belluti S, Renzini A, Cavioli G, Maretti E, Molinari S. Epitranscriptomics as a New Layer of Regulation of Gene Expression in Skeletal Muscle: Known Functions and Future Perspectives. Int J Mol Sci 2023; 24:15161. [PMID: 37894843 PMCID: PMC10606696 DOI: 10.3390/ijms242015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epitranscriptomics refers to post-transcriptional regulation of gene expression via RNA modifications and editing that affect RNA functions. Many kinds of modifications of mRNA have been described, among which are N6-methyladenosine (m6A), N1-methyladenosine (m1A), 7-methylguanosine (m7G), pseudouridine (Ψ), and 5-methylcytidine (m5C). They alter mRNA structure and consequently stability, localization and translation efficiency. Perturbation of the epitranscriptome is associated with human diseases, thus opening the opportunity for potential manipulations as a therapeutic approach. In this review, we aim to provide an overview of the functional roles of epitranscriptomic marks in the skeletal muscle system, in particular in embryonic myogenesis, muscle cell differentiation and muscle homeostasis processes. Further, we explored high-throughput epitranscriptome sequencing data to identify RNA chemical modifications in muscle-specific genes and we discuss the possible functional role and the potential therapeutic applications.
Collapse
Affiliation(s)
- Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy;
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy; (A.R.); (G.C.)
| | - Eleonora Maretti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| | - Susanna Molinari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (S.B.); (E.M.)
| |
Collapse
|
6
|
Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications. Int J Mol Sci 2022; 23:13851. [PMID: 36430347 PMCID: PMC9695239 DOI: 10.3390/ijms232213851] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules. Together, these modifications form the epitranscriptome, an essential layer of cellular biochemistry. As of the time of writing this review, more than 300 distinct RNA modifications from all three life domains have been identified. However, only a few of the most well-established modifications are included in most reviews on this topic. To provide a complete overview of the current state of research on the epitranscriptome, we analyzed the extent of the available information for all known RNA modifications. We selected 25 modifications to describe in detail. Summarizing our findings, we describe the current status of research on most RNA modifications and identify further developments in this field.
Collapse
Affiliation(s)
- Viktoriia A. Arzumanian
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | - Georgii V. Dolgalev
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | | | | | | |
Collapse
|
7
|
Wagner A, Schosserer M. The epitranscriptome in ageing and stress resistance: A systematic review. Ageing Res Rev 2022; 81:101700. [PMID: 35908668 DOI: 10.1016/j.arr.2022.101700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
Modifications of RNA, collectively called the "epitranscriptome", might provide novel biomarkers and innovative targets for interventions in geroscience but are just beginning to be studied in the context of ageing and stress resistance. RNA modifications modulate gene expression by affecting translation initiation and speed, miRNA binding, RNA stability, and RNA degradation. Nonetheless, the precise underlying molecular mechanisms and physiological consequences of most alterations of the epitranscriptome are still only poorly understood. We here systematically review different types of modifications of rRNA, tRNA and mRNA, the methodology to analyze them, current challenges in the field, and human disease associations. Furthermore, we compiled evidence for a connection between individual enzymes, which install RNA modifications, and lifespan in yeast, worm and fly. We also included resistance to different stressors and competitive fitness as search criteria for genes potentially relevant to ageing. Promising candidates identified by this approach include RCM1/NSUN5, RRP8, and F33A8.4/ZCCHC4 that introduce base methylations in rRNA, the methyltransferases DNMT2 and TRM9/ALKBH8, as well as factors involved in the thiolation or A to I editing in tRNA, and finally the m6A machinery for mRNA.
Collapse
Affiliation(s)
- Anja Wagner
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
8
|
Aragaw TA, Bogale FM, Gessesse A. Adaptive Response of Thermophiles to Redox Stress and Their Role in the Process of dye Degradation From Textile Industry Wastewater. Front Physiol 2022; 13:908370. [PMID: 35795652 PMCID: PMC9251311 DOI: 10.3389/fphys.2022.908370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 01/28/2023] Open
Abstract
Release of dye-containing textile wastewater into the environment causes severe pollution with serious consequences on aquatic life. Bioremediation of dyes using thermophilic microorganisms has recently attracted attention over conventional treatment techniques. Thermophiles have the natural ability to survive under extreme environmental conditions, including high dye concentration, because they possess stress response adaptation and regulation mechanisms. Therefore, dye detoxification by thermophiles could offer enormous opportunities for bioremediation at elevated temperatures. In addition, the processes of degradation generate reactive oxygen species (ROS) and subject cells to oxidative stress. However, thermophiles exhibit better adaptation to resist the effects of oxidative stress. Some of the major adaptation mechanisms of thermophiles include macromolecule repair system; enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and non-enzymatic antioxidants like extracellular polymeric substance (EPSs), polyhydroxyalkanoates (PHAs), etc. In addition, different bacteria also possess enzymes that are directly involved in dye degradation such as azoreductase, laccase, and peroxidase. Therefore, through these processes, dyes are first degraded into smaller intermediate products finally releasing products that are non-toxic or of low toxicity. In this review, we discuss the sources of oxidative stress in thermophiles, the adaptive response of thermophiles to redox stress and their roles in dye removal, and the regulation and crosstalk between responses to oxidative stress.
Collapse
Affiliation(s)
- Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- *Correspondence: Tadele Assefa Aragaw,
| | - Fekadu Mazengiaw Bogale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
9
|
Alam M, Shima H, Matsuo Y, Long NC, Matsumoto M, Ishii Y, Sato N, Sugiyama T, Nobuta R, Hashimoto S, Liu L, Kaneko MK, Kato Y, Inada T, Igarashi K. mTORC1-independent translation control in mammalian cells by methionine adenosyltransferase 2A and S-adenosylmethionine. J Biol Chem 2022; 298:102084. [PMID: 35636512 PMCID: PMC9243181 DOI: 10.1016/j.jbc.2022.102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.
Collapse
Affiliation(s)
- Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Animal Science and Nutrition, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshitaka Matsuo
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nguyen Chi Long
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusho Ishii
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nichika Sato
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takato Sugiyama
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Risa Nobuta
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Satoshi Hashimoto
- Laboratory of Gene Regulation, Department of Molecular Biopharmacy and Genetics, Tohoku University Graduate School of Pharmaceutical Science, Sendai, Japan
| | - Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
10
|
Kelley M, Paulines MJ, Yoshida G, Myers R, Jora M, Levoy JP, Addepalli B, Benoit JB, Limbach PA. Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs. PLoS One 2022; 17:e0266239. [PMID: 35349591 PMCID: PMC8963569 DOI: 10.1371/journal.pone.0266239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mellie June Paulines
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ryan Myers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joel P. Levoy
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
11
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
12
|
Li H, Dong H, Xu B, Xiong QP, Li CT, Yang WQ, Li J, Huang ZX, Zeng QY, Wang ED, Liu RJ. A dual role of human tRNA methyltransferase hTrmt13 in regulating translation and transcription. EMBO J 2021; 41:e108544. [PMID: 34850409 PMCID: PMC8922252 DOI: 10.15252/embj.2021108544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.
Collapse
Affiliation(s)
- Hao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Han Dong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qing-Ping Xiong
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhi-Xuan Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi-Yu Zeng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - En-Duo Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
13
|
Sarkar A, Gasperi W, Begley U, Nevins S, Huber SM, Dedon PC, Begley TJ. Detecting the epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1663. [PMID: 33987958 DOI: 10.1002/wrna.1663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022]
Abstract
RNA modifications and their corresponding epitranscriptomic writer and eraser enzymes regulate gene expression. Altered RNA modification levels, dysregulated writers, and sequence changes that disrupt epitranscriptomic marks have been linked to mitochondrial and neurological diseases, cancer, and multifactorial disorders. The detection of epitranscriptomics marks is challenging, but different next generation sequencing (NGS)-based and mass spectrometry-based approaches have been used to identify and quantitate the levels of individual and groups of RNA modifications. NGS and mass spectrometry-based approaches have been coupled with chemical, antibody or enzymatic methodologies to identify modifications in most RNA species, mapped sequence contexts and demonstrated the dynamics of specific RNA modifications, as well as the collective epitranscriptome. While epitranscriptomic analysis is currently limited to basic research applications, specific approaches for the detection of individual RNA modifications and the epitranscriptome have potential biomarker applications in detecting human conditions and diseases. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Processing > tRNA Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anwesha Sarkar
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| | - William Gasperi
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| | - Ulrike Begley
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| | - Steven Nevins
- Nanoscale Science Constellation, SUNY Polytechnic Institute, Albany, New York, USA
| | | | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|