1
|
Kosciessa JQ, Mayr U, Lindenberger U, Garrett DD. Broadscale dampening of uncertainty adjustment in the aging brain. Nat Commun 2024; 15:10717. [PMID: 39715747 PMCID: PMC11666723 DOI: 10.1038/s41467-024-55416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
The ability to prioritize among input features according to relevance enables adaptive behaviors across the human lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control. While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess uncertainty adjustment across the adult lifespan (N = 100; cross-sectional) via behavioral modeling and a theoretically informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening of uncertainty adjustment relative to younger adults. At the individual level, older individuals whose modulation more closely resembled that of younger adults also exhibit better maintenance of cognitive control. Our results highlight neural mechanisms whose maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan.
Collapse
Affiliation(s)
- Julian Q Kosciessa
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Ulrich Mayr
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany.
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
2
|
López-Madrona VJ, Trébuchon A, Bénar CG, Schön D, Morillon B. Different sustained and induced alpha oscillations emerge in the human auditory cortex during sound processing. Commun Biol 2024; 7:1570. [PMID: 39592826 PMCID: PMC11599602 DOI: 10.1038/s42003-024-07297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Alpha oscillations in the auditory cortex have been associated with attention and the suppression of irrelevant information. However, their anatomical organization and interaction with other neural processes remain unclear. Do alpha oscillations function as a local mechanism within most neural sources to regulate their internal excitation/inhibition balance, or do they belong to separated inhibitory sources gating information across the auditory network? To address this question, we acquired intracerebral electrophysiological recordings from epilepsy patients during rest and tones listening. Thanks to independent component analysis, we disentangled the different neural sources and labeled them as "oscillatory" if they presented strong alpha oscillations at rest, and/or "evoked" if they displayed a significant evoked response to the stimulation. Our results show that 1) sources are condition-specific and segregated in the auditory cortex, 2) both sources have a high-gamma response followed by an induced alpha suppression, 3) only oscillatory sources present a sustained alpha suppression during all the stimulation period. We hypothesize that there are two different alpha oscillations in the auditory cortex: an induced bottom-up response indicating a selective engagement of the primary cortex to process the stimuli, and a sustained suppression reflecting a general disinhibited state of the network to process sensory information.
Collapse
Affiliation(s)
- Víctor J López-Madrona
- Institute of Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France.
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| | - Agnès Trébuchon
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
- APHM, Timone Hospital, Functional and stereotactic neurosurgery, Marseille, 13005, France
| | - Christian G Bénar
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Daniele Schön
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Benjamin Morillon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
3
|
Karimi H, Boudewyn M, van den Heever D, Diaz M. Age-related differences in memory encoding and retrieval during referential processing: A time-frequency analysis. Psychol Aging 2024; 39:731-749. [PMID: 39495563 PMCID: PMC11537493 DOI: 10.1037/pag0000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
We investigated how lexical form similarity of referential candidates and ambiguity of following pronouns impact the encoding and retrieval of words from memory during sentence processing in younger and older adults. Critical sentences included two noun phrases (henceforth NPs) that were either phonologically and orthographically similar (Jason and Jacob/Jade) or dissimilar (Jason and Matt/Hannah), followed by a pronoun (e.g., he) that was either ambiguous or unambiguous (depending on the genders of the preceding NPs). We analyzed brain activity time-locked to the onsets of the second NP (NP2) and the pronoun to investigate the encoding and the retrieval of the NPs, respectively. During encoding NP2, older adults exhibited greater alpha power when NP1 had the same-gender, whereas younger adults showed no such effect, suggesting an increased need for inhibition for older adults during encoding. Moreover, although both groups exhibited an increase in alpha power for similar NPs, only younger adults exhibited a theta power increase, suggesting similarity-induced inhibition for both groups, but an additional maintenance cost only for younger adults. During retrieval (i.e., on the pronoun), we found that both pronominal ambiguity and form similarity resulted in greater theta power for younger adults, suggesting full pronominal processing and therefore more difficult retrieval, but smaller theta/alpha power for older adults, suggesting good-enough processing and therefore easier retrieval. Together with complementary behavioral results, our findings suggest that older adults resort to good-enough referential processing when the retrieval of relevant representations is cognitively demanding. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
|
4
|
Lemaire P. How Distracting Events Influence Young and Older adults' Arithmetic Performance? Exp Aging Res 2024; 50:597-616. [PMID: 37675793 DOI: 10.1080/0361073x.2023.2250224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
In this study, I investigated the role of distraction on arithmetic performance and whether this role changes with aging during adulthood. Young and older adults were asked to verify one-digit addition problems (Expt. 1) or to estimate the results of two-digit multiplication problems (Expt. 2). In both experiments, true and false simple problems (Expt. 1) or easier and harder complex problems (Expt. 2) were displayed superimposed or not on irrelevant, emotionally neutral pictures (e.g. mushrooms). In both simple and complex arithmetic, young and older adults obtained poorer arithmetic performance under distraction relative to no-distraction conditions. Most interesting, deleterious effects of irrelevant stimuli on arithmetic performance were larger in older than in young adults. Moreover, magnitude of distraction effects increased with longer solution latencies in young (but not in older) adults while solving complex arithmetic problems. These findings have important implications for furthering our understanding of the role of distraction on cognitive performance in general, and arithmetic performance in particular, as well as age-related differences in this role.
Collapse
|
5
|
Hoyer RS, Tewarie PKB, Laureys S. Spatiotemporal dynamics of brain activity in cognition and consciousness: Comment on "Beyond task responsePre-stimulus activity modulates contents of consciousness" by Northoff, Zilio, and Zhang. Phys Life Rev 2024; 50:63-65. [PMID: 38964240 DOI: 10.1016/j.plrev.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Affiliation(s)
- Roxane S Hoyer
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Canada
| | - Prejaas K B Tewarie
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Canada; Sir Peter Mansfield Imaging Center, School of Physics, University of Nottingham, United Kingdom; Clinical Neurophysiology Group, University of Twente, Netherlands
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, Laval University, Canada; GIGA Consciousness Research Unit and Coma Science Group, Liège University, Belgium; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Mertel K, Dimitrijevic A, Thaut M. Can Music Enhance Working Memory and Speech in Noise Perception in Cochlear Implant Users? Design Protocol for a Randomized Controlled Behavioral and Electrophysiological Study. Audiol Res 2024; 14:611-624. [PMID: 39051196 PMCID: PMC11270222 DOI: 10.3390/audiolres14040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND A cochlear implant (CI) enables deaf people to understand speech but due to technical restrictions, users face great limitations in noisy conditions. Music training has been shown to augment shared auditory and cognitive neural networks for processing speech and music and to improve auditory-motor coupling, which benefits speech perception in noisy listening conditions. These are promising prerequisites for studying multi-modal neurologic music training (NMT) for speech-in-noise (SIN) perception in adult cochlear implant (CI) users. Furthermore, a better understanding of the neurophysiological correlates when performing working memory (WM) and SIN tasks after multi-modal music training with CI users may provide clinicians with a better understanding of optimal rehabilitation. METHODS Within 3 months, 81 post-lingual deafened adult CI recipients will undergo electrophysiological recordings and a four-week neurologic music therapy multi-modal training randomly assigned to one of three training focusses (pitch, rhythm, and timbre). Pre- and post-tests will analyze behavioral outcomes and apply a novel electrophysiological measurement approach that includes neural tracking to speech and alpha oscillation modulations to the sentence-final-word-identification-and-recall test (SWIR-EEG). Expected outcome: Short-term multi-modal music training will enhance WM and SIN performance in post-lingual deafened adult CI recipients and will be reflected in greater neural tracking and alpha oscillation modulations in prefrontal areas. Prospectively, outcomes could contribute to understanding the relationship between cognitive functioning and SIN besides the technical deficits of the CI. Targeted clinical application of music training for post-lingual deafened adult CI carriers to significantly improve SIN and positively impact the quality of life can be realized.
Collapse
Affiliation(s)
- Kathrin Mertel
- Music and Health Research Collaboratory (MaHRC), University of Toronto, Toronto, ON M5S 1C5, Canada;
| | - Andrew Dimitrijevic
- Sunnybrook Cochlear Implant Program, Sunnybrook Hospital, Toronto, ON M4N 3M5, Canada;
| | - Michael Thaut
- Music and Health Research Collaboratory (MaHRC), University of Toronto, Toronto, ON M5S 1C5, Canada;
| |
Collapse
|
7
|
Brown T, Kim K, Gehring WJ, Lustig C, Bohnen NI. Sensitivity to and Control of Distraction: Distractor-Entrained Oscillation and Frontoparietal EEG Gamma Synchronization. Brain Sci 2024; 14:609. [PMID: 38928609 PMCID: PMC11202030 DOI: 10.3390/brainsci14060609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
While recent advancements have been made towards a better understanding of the involvement of the prefrontal cortex (PFC) in the context of cognitive control, the exact mechanism is still not fully understood. Successful behavior requires the correct detection of goal-relevant cues and resisting irrelevant distractions. Frontal parietal networks have been implicated as important for maintaining cognitive control in the face of distraction. The present study investigated the role of gamma-band power in distraction resistance and frontoparietal networks, as its increase is linked to cholinergic activity. We examined changes in gamma activity and their relationship to frontoparietal top-down modulation for distractor challenges and to bottom-up distractor processing. Healthy young adults were tested using a modified version of the distractor condition sustained attention task (dSAT) while wearing an EEG. The modified distractor was designed so that oscillatory activities could be entrained to it, and the strength of entrainment was used to assess the degree of distraction. Increased top-down control during the distractor challenge increased gamma power in the left parietal regions rather than the right prefrontal regions predicted from rodent studies. Specifically, left parietal gamma power increased in response to distraction where the amount of this increase was negatively correlated with the neural activity reflecting bottom-up distractor processing in the visual area. Variability in gamma power in right prefrontal regions was associated with increased response time variability during distraction. This may suggest that the right prefrontal region may contribute to the signaling needed for top-down control rather than its implementation.
Collapse
Affiliation(s)
- Taylor Brown
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kamin Kim
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - William J. Gehring
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - Cindy Lustig
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; (K.K.); (W.J.G.); (C.L.)
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA;
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Arif Y, Wiesman AI, Christopher-Hayes N, Okelberry HJ, Johnson HJ, Willett MP, Wilson TW. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants. Neuroimage 2023; 280:120351. [PMID: 37659656 PMCID: PMC10545948 DOI: 10.1016/j.neuroimage.2023.120351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
9
|
Lemaire P, Lee K. How do distracting events influence children's arithmetic performance? J Exp Child Psychol 2023; 225:105531. [PMID: 35988358 DOI: 10.1016/j.jecp.2022.105531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
To understand how distraction influences children's arithmetic performance, we examined effects of irrelevant sounds on children's performance while they solve arithmetic problems. Third and fifth graders were asked to verify true/false, one-digit addition problems (e.g., 9 + 4 = 12. True? False?) under silence and sound conditions. The sounds began when the problems started to appear on the screen (Experiment 1; N = 76) or slightly after (Experiment 2; N = 92) and continued until participants responded. The results showed that (a) children solved arithmetic problems more quickly in the sound condition than in the silence condition when the sounds started with problem display (phasic arousal effects); (b) children were slower on the arithmetic problem verification task when the sounds was played slightly after the problems started to appear on the screen (distraction effects); (c) phasic arousal effects were found only in third graders, whereas distraction effects were found in both grades, although their magnitudes were smaller in fifth graders; (d) distraction effects increased with increasing latencies in third graders but did not change across the entire latency distribution in fifth graders; and (e) distraction effects on current trials were smaller after sound trials than after silence trials in both age groups (sequential modulations of distraction effects). These findings have important implications for furthering our understanding of effects of irrelevant sounds on arithmetic performance as well as cognitive processes involved in children's arithmetic.
Collapse
Affiliation(s)
- Patrick Lemaire
- Laboratoire de psychologie cognitive (LPC), Aix-Marseille Université, and Centre national de la recherche scientifique (CNRS), 13331 Marseille, France.
| | - Kerry Lee
- Department of Early Childhood Education, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region
| |
Collapse
|
10
|
Leite J, Gonçalves ÓF, Carvalho S. Speed of Processing (SoP) Training Plus α-tACS in People With Mild Cognitive Impairment: A Double Blind, Parallel, Placebo Controlled Trial Study Protocol. Front Aging Neurosci 2022; 14:880510. [PMID: 35928993 PMCID: PMC9344129 DOI: 10.3389/fnagi.2022.880510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Several cognitive training programs, alone or in combination with non-invasive brain stimulation have been tested in order to ameliorate age-related cognitive impairments, such as the ones found in Mild Cognitive Impairment (MCI). However, the effects of Cognitive Training (CT)—combined or not—with several forms of non-invasive brain stimulation have been modest at most. We aim to assess if Speed of Processing (SoP) training combined with alpha transcranial alternating current stimulation (α-tACS) is able to increase speed of processing as assessed by the Useful Field of View (UFOV), when comparing to SoP training or active α-tACS alone. Moreover, we want to assess if those changes in speed of processing transfer to other cognitive domains, such as memory, language and executive functioning by using the NIH EXAMINER. We also want to test the mechanisms underlying these interventions, namely brain connectivity and coherence as assessed by electroencephalography (EEG). To that purpose, our proposal is to enroll 327 elders diagnosed with MCI in a double-blinded, parallel randomized clinical trial assessing the effects of combining SoP with alpha endogenous tACS (either active or sham) in people with MCI. Participants will perform an intervention that will last for 15 sessions. For the first 3 weeks, participants will receive nine sessions of the intervention, and then will receive two sessions per week (i.e., booster) for the following 3 weeks. They will then be assessed at 1, 3, and 6 months after the intervention has ended. This will allow us to detect the immediate, and long-term effects of the interventions, as well as to probe the mechanisms underlying its effects.Clinical Trial Registration:Clinicaltrials.gov, Identifier: NCT05198726.
Collapse
Affiliation(s)
- Jorge Leite
- Portucalense Institute for Human Development—INPP, Portucalense University, Porto, Portugal
- Portuguese Network for the Psychological Neuroscience, Portugal
- *Correspondence: Jorge Leite
| | - Óscar F. Gonçalves
- Portuguese Network for the Psychological Neuroscience, Portugal
- Proaction Laboratory, CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Carvalho
- Portuguese Network for the Psychological Neuroscience, Portugal
- Department of Education and Psychology and William James Center for Research, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- The Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Opitz L, Wagner F, Rogenz J, Maas J, Schmidt A, Brodoehl S, Klingner CM. Still Wanting to Win: Reward System Stability in Healthy Aging. Front Aging Neurosci 2022; 14:863580. [PMID: 35707701 PMCID: PMC9190761 DOI: 10.3389/fnagi.2022.863580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is accompanied by multi-faceted changes. Especially within the brain, healthy aging exerts substantial impetus on core parts of cognitive and motivational networks. Rewards comprise basic needs, such as food, sleep, and social contact. Thus, a functionally intact reward system remains indispensable for elderly people to cope with everyday life and adapt to their changing environment. Research shows that reward system function is better preserved in the elderly than most cognitive functions. To investigate the compensatory mechanisms providing reward system stability in aging, we employed a well-established reward paradigm (Monetary Incentive Delay Task) in groups of young and old participants while undergoing EEG measurement. As a new approach, we applied EEG connectivity analyses to assess cortical reward-related network connectivity. At the behavioral level, our results confirm that the function of the reward system is preserved in old age. The mechanisms identified for maintaining reward system function in old age do not fit into previously described models of cognitive aging. Overall, older adults exhibit lower reward-related connectivity modulation, higher reliance on posterior and right-lateralized brain areas than younger adults, and connectivity modulation in the opposite direction than younger adults, with usually greater connectivity during non-reward compared to reward conditions. We believe that the reward system has unique compensatory mechanisms distinct from other cognitive functions, probably due to its etymologically very early origin. In summary, this study provides important new insights into cortical reward network connectivity in healthy aging.
Collapse
Affiliation(s)
- Laura Opitz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Franziska Wagner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
- Clinician Scientist Program OrganAge, Jena University Hospital, Jena, Germany
- *Correspondence: Franziska Wagner,
| | - Jenny Rogenz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Johanna Maas
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Alexander Schmidt
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Stefan Brodoehl
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| | - Carsten M. Klingner
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Biomagnetic Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Gray R, Sarampalis A, Başkent D, Harding EE. Working-Memory, Alpha-Theta Oscillations and Musical Training in Older Age: Research Perspectives for Speech-on-speech Perception. Front Aging Neurosci 2022; 14:806439. [PMID: 35645774 PMCID: PMC9131017 DOI: 10.3389/fnagi.2022.806439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
During the normal course of aging, perception of speech-on-speech or “cocktail party” speech and use of working memory (WM) abilities change. Musical training, which is a complex activity that integrates multiple sensory modalities and higher-order cognitive functions, reportedly benefits both WM performance and speech-on-speech perception in older adults. This mini-review explores the relationship between musical training, WM and speech-on-speech perception in older age (> 65 years) through the lens of the Ease of Language Understanding (ELU) model. Linking neural-oscillation literature associating speech-on-speech perception and WM with alpha-theta oscillatory activity, we propose that two stages of speech-on-speech processing in the ELU are underpinned by WM-related alpha-theta oscillatory activity, and that effects of musical training on speech-on-speech perception may be reflected in these frequency bands among older adults.
Collapse
Affiliation(s)
- Ryan Gray
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Psychology, Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Anastasios Sarampalis
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Deniz Başkent
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eleanor E. Harding
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Eleanor E. Harding,
| |
Collapse
|
13
|
ElShafei HA, Masson R, Fakche C, Fornoni L, Moulin A, Caclin A, Bidet-Caulet A. Age-related differences in bottom-up and top-down attention: Insights from EEG and MEG. Eur J Neurosci 2022; 55:1215-1231. [PMID: 35112420 PMCID: PMC9303169 DOI: 10.1111/ejn.15617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022]
Abstract
Attention operates through top‐down and bottom‐up processes, and a balance between these processes is crucial for daily tasks. Imperilling such balance could explain ageing‐associated attentional problems such as exacerbated distractibility. In this study, we aimed to characterize this enhanced distractibility by investigating the impact of ageing upon event‐related components associated with top‐down and bottom‐up attentional processes. MEG and EEG data were acquired from 14 older and 14 younger healthy adults while performing a task that conjointly evaluates top‐down and bottom‐up attention. Event‐related components were analysed on sensor and source levels. In comparison with the younger group, the older mainly displayed (1) reduced target anticipation processes (reduced CMV), (2) increased early target processing (larger P50 but smaller N1) and (3) increased processing of early distracting sounds (larger N1 but reduced P3a), followed by a (4) prolonged reorientation towards the main task (larger RON). Taken together, our results suggest that the enhanced distractibility in ageing could stem from top‐down deficits, in particular from reduced inhibitory and reorientation processes.
Collapse
Affiliation(s)
- Hesham A ElShafei
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France.,Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands.,Donders Centre for Cognitive Neuroimaging, EN, Nijmegen, Netherlands
| | - Rémy Masson
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Camille Fakche
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Annie Moulin
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
14
|
Ruby P, Masson R, Chatard B, Hoyer R, Bottemanne L, Vallat R, Bidet-Caulet A. High Dream Recall Frequency Is Associated with an Increase of Both Bottom-Up and Top-Down Attentional Processes. Cereb Cortex 2021; 32:3752-3762. [PMID: 34902861 DOI: 10.1093/cercor/bhab445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Event-related potentials (ERPs) associated with the involuntary orientation of (bottom-up) attention toward an unexpected sound are of larger amplitude in high dream recallers (HR) than in low dream recallers (LR) during passive listening, suggesting different attentional functioning. We measured bottom-up and top-down attentional performance and their cerebral correlates in 18 HR (11 women, age = 22.7 years, dream recall frequency = 5.3 days with a dream recall per week) and 19 LR (10 women, age = 22.3, DRF = 0.2) using EEG and the Competitive Attention Task. Between-group differences were found in ERPs but not in behavior. The results show that HR present larger ERPs to distracting sounds than LR even during active listening, arguing for enhanced bottom-up processing of irrelevant sounds. HR also presented larger contingent negative variation during target expectancy and P3b to target sounds than LR, speaking for an enhanced recruitment of top-down attention. The attentional balance seems preserved in HR since their performances are not altered, but possibly at a higher resource cost. In HR, increased bottom-up processes would favor dream recall through awakening facilitation during sleep and enhanced top-down processes may foster dream recall through increased awareness and/or short-term memory stability of dream content.
Collapse
Affiliation(s)
- Perrine Ruby
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Rémy Masson
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Benoit Chatard
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Roxane Hoyer
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Laure Bottemanne
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Raphael Vallat
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| | - Aurélie Bidet-Caulet
- Perception, Attention, Memory Team-Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon 69000, France
| |
Collapse
|
15
|
Gorgoni M, Scarpelli S, Annarumma L, D’Atri A, Alfonsi V, Ferrara M, De Gennaro L. The Regional EEG Pattern of the Sleep Onset Process in Older Adults. Brain Sci 2021; 11:1261. [PMID: 34679326 PMCID: PMC8534130 DOI: 10.3390/brainsci11101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy aging is characterized by macrostructural sleep changes and alterations of regional electroencephalographic (EEG) sleep features. However, the spatiotemporal EEG pattern of the wake-sleep transition has never been described in the elderly. The present study aimed to assess the topographical and temporal features of the EEG during the sleep onset (SO) in a group of 36 older participants (59-81 years). The topography of the 1 Hz bins' EEG power and the time course of the EEG frequency bands were assessed. Moreover, we compared the delta activity and delta/beta ratio between the older participants and a group of young adults. The results point to several peculiarities in the elderly: (a) the generalized post-SO power increase in the slowest frequencies did not include the 7 Hz bin; (b) the alpha power revealed a frequency-specific pattern of post-SO modifications; (c) the sigma activity exhibited only a slight post-SO increase, and its highest bins showed a frontotemporal power decrease. Older adults showed a generalized reduction of delta power and delta/beta ratio in both pre- and post-SO intervals compared to young adults. From a clinical standpoint, the regional EEG activity may represent a target for brain stimulation techniques to reduce SO latency and sleep fragmentation.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | | | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|
16
|
Mächler P, Broggini T, Mateo C, Thunemann M, Fomin-Thunemann N, Doran PR, Sencan I, Kilic K, Desjardins M, Uhlirova H, Yaseen MA, Boas DA, Linninger AA, Vergassola M, Yu X, Lewis LD, Polimeni JR, Rosen BR, Sakadžić S, Buxton RB, Lauritzen M, Kleinfeld D, Devor A. A Suite of Neurophotonic Tools to Underpin the Contribution of Internal Brain States in fMRI. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18:100273. [PMID: 33959688 PMCID: PMC8095678 DOI: 10.1016/j.cobme.2021.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent developments in optical microscopy, applicable for large-scale and longitudinal imaging of cortical activity in behaving animals, open unprecedented opportunities to gain a deeper understanding of neurovascular and neurometabolic coupling during different brain states. Future studies will leverage these tools to deliver foundational knowledge about brain state-dependent regulation of cerebral blood flow and metabolism as well as regulation as a function of brain maturation and aging. This knowledge is of critical importance to interpret hemodynamic signals observed with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas Broggini
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Celine Mateo
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Patrick R. Doran
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Hana Uhlirova
- Institute of Scientific Instruments of the Czech Academy of Science, Brno, Czech Republic
| | - Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andreas A. Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Massimo Vergassola
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Département de Physique de l’Ecole Normale Supérieure, 75005 Paris, France
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, CA 92037, USA
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N 2200, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup 2600, Denmark
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Section on Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
17
|
Courtney SM, Hinault T. When the time is right: Temporal dynamics of brain activity in healthy aging and dementia. Prog Neurobiol 2021; 203:102076. [PMID: 34015374 DOI: 10.1016/j.pneurobio.2021.102076] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Brain activity and communications are complex phenomena that dynamically unfold over time. However, in contrast with the large number of studies reporting neuroanatomical differences in activation relative to young adults, changes of temporal dynamics of neural activity during normal and pathological aging have been grossly understudied and are still poorly known. Here, we synthesize the current state of knowledge from MEG and EEG studies that aimed at specifying the effects of healthy and pathological aging on local and network dynamics, and discuss the clinical and theoretical implications of these findings. We argue that considering the temporal dynamics of brain activations and networks could provide a better understanding of changes associated with healthy aging, and the progression of neurodegenerative disease. Recent research has also begun to shed light on the association of these dynamics with other imaging modalities and with individual differences in cognitive performance. These insights hold great potential for driving new theoretical frameworks and development of biomarkers to aid in identifying and treating age-related cognitive changes.
Collapse
Affiliation(s)
- S M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, MD 21205, USA
| | - T Hinault
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; U1077 INSERM-EPHE-UNICAEN, Caen, France.
| |
Collapse
|
18
|
Hoyer RS, Elshafei H, Hemmerlin J, Bouet R, Bidet-Caulet A. Why Are Children So Distractible? Development of Attention and Motor Control From Childhood to Adulthood. Child Dev 2021; 92:e716-e737. [PMID: 33825204 DOI: 10.1111/cdev.13561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Distractibility is the propensity to behaviorally react to irrelevant information. Although children are more distractible the younger they are, the precise contribution of attentional and motor components to distractibility and their developmental trajectories have not been characterized yet. We used a new behavioral paradigm to identify the developmental dynamics of components contributing to distractibility in a large cohort of French participants balanced, between age groups, in gender and socioeconomic status (N = 352; age: 6-25). Results reveal that each measure of these components, namely voluntary attention, distraction, impulsivity, and motor control, present a distinct maturational timeline. In young children, increased distractibility is mostly the result of reduced sustained attention capacities and enhanced distraction, whereas in teenagers, it is the result of decreased motor control and increased impulsivity.
Collapse
Affiliation(s)
- Roxane S Hoyer
- INSERM, CNRS, Université Claude Bernard Lyon 1 and Université de Lyon
| | - Hesham Elshafei
- INSERM, CNRS, Université Claude Bernard Lyon 1 and Université de Lyon
| | - Julie Hemmerlin
- INSERM, CNRS, Université Claude Bernard Lyon 1 and Université de Lyon
| | - Romain Bouet
- INSERM, CNRS, Université Claude Bernard Lyon 1 and Université de Lyon
| | | |
Collapse
|
19
|
John AT, Wind J, Horst F, Schöllhorn WI. Acute Effects of an Incremental Exercise Test on Psychophysiological Variables and Their Interaction. J Sports Sci Med 2020; 19:596-612. [PMID: 32874113 PMCID: PMC7429434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Besides neurophysiological effects, the potential influence of exercise induced strains in terms of peripheral physiology or subjectively perceived stress as well as their possible reciprocal relation is not clearly understood yet. This study aimed to analyze effects of increasing exercise intensity on brain activity (spontaneous EEG), heart rate variability (HRV) and rating of perceived exertion (RPE) by means of a graded exercise test (GXT). Fifteen participants performed an open-loop GXT on a bicycle ergometer beginning at 50W and an increment of 50W every three minutes. Rest measurements were conducted pre- (5 min) and especially post-exercise (15 min) to analyze (neuro-) physiological prolonged effects. EEG and HRV were measured in parallel before, during (including RPE) and after GXT. Brain activity showed next to already determined effects (e.g. increased (pre)frontal theta, alpha and beta power) a particular activation of the temporal lobe after GXT compared to pre-resting state. HRV frequency parameters significantly decreased following GXT. Recovery process revealed a significant alteration of EEG and HRV towards pre-resting state with prolonged effects in the temporal lobe. Correlation analysis during GXT led to moderately negative effects of EEG total spectrum power and HRV frequency parameters. Frontopolar and temporal lobe revealed noteworthy negative correlated effects with HRV. Referring to RPE, solely temporal gamma activity correlated moderately positive with RPE. Recovery exposed only in the temporal cortex a moderately negative correlation to HF power. Thus, further analysis of the temporal brain lobe in context with exhausting physical exercise comprising induced regulation of cardiovascular stress and perceived exertion is promoted. These results indicate a brain lobe specific relation to peripheral physiology as well as perceived strain with a dependency of rest or exercise condition. Therefore, enough incentives are given to encourage further analysis of a connection between the (neuro-) physiological system as well as subjectively perceived exertion.
Collapse
Affiliation(s)
- Alexander T John
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Johanna Wind
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang I Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
20
|
Masson R, Lévêque Y, Demarquay G, ElShafei H, Fornoni L, Lecaignard F, Morlet D, Bidet-Caulet A, Caclin A. Auditory attention alterations in migraine: A behavioral and MEG/EEG study. Clin Neurophysiol 2020; 131:1933-1946. [PMID: 32619799 DOI: 10.1016/j.clinph.2020.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings. METHODS 19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and magneto- and electro-encephalography signals were recorded. Event-related potentials and fields were processed and source reconstruction was applied to event-related fields. RESULTS At the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd). CONCLUSIONS Migraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention. SIGNIFICANCE The interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.
Collapse
Affiliation(s)
- Rémy Masson
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
| | - Yohana Lévêque
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Geneviève Demarquay
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France; Neurological Hospital Pierre Wertheimer, Functional Neurology and Epilepsy Department, Hospices Civils de Lyon and Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Hesham ElShafei
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Lesly Fornoni
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Françoise Lecaignard
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Dominique Morlet
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Anne Caclin
- Lyon Neuroscience Research Center (CRNL), INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|