1
|
Li R, Su K, Wu T, Xu L, Song W, Sun D, Zeng T, Chen J, Xin H, Li Y, Zang M, Hu M. Genome-wide enhancer-gene regulatory maps of liver reveal novel regulatory mechanisms underlying NAFLD pathogenesis. BMC Genomics 2025; 26:493. [PMID: 40375105 PMCID: PMC12082939 DOI: 10.1186/s12864-025-11668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) represents the most widespread liver disease globally, ranging from non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH) to fibrosis/cirrhosis, with potential progression to hepatocellular carcinoma (HCC). Genome-wide association studies (GWASs) have identified several single nucleotide polymorphisms (SNPs) associated with NAFLD. However, numerous GWAS signals associated with NAFLD locate in non-coding regions, posing a challenge for interpreting their functional annotation. RESULTS In this study, we utilized the Activity-by-Contact (ABC) model to construct the enhancer-gene maps of liver by integrating epigenomic data from 15 liver tissues and cell lines. We constructed the most comprehensive genome-wide regulatory maps of the liver, identifying 543,486 enhancer-gene connections, including 267,857 enhancers and 16,872 target genes. Enrichment analyses revealed that the ABC SNPs are significantly enriched in active chromatin regions and active chromatin state. By combining the ABC regulatory maps and NAFLD GWAS data, we systematically identified ABC SNPs associated with NAFLD risk. Through the functional annotations, such as pathway enrichment and drug-gene interaction analyses, we identified 6 genes (GGT1, ACTG1, SPP1, EPHA2, PROZ and SHMT1) as candidate NAFLD genes, with SHMT1 previously reported. Among the SNPs connected to the candidate genes, the ABC SNP rs2017869 (odds ratio [OR] for the C allele = 1.10, 95% CI = 1.04-1.16, P = 5.97 × 10- 4) had the highest ABC score. According to the ABC maps, rs2017869 links to GGT1, and several drugs targeting this gene, such as liothyronine, showed potential benefits to patients with NAFLD. Furthermore, we identified that another novel gene, EPHA2, may play a crucial role in NAFLD by regulating the GGT levels. CONCLUSIONS Our study provides the most comprehensive ABC regulatory maps of the liver to date. This resource offers a valuable reference for identifying regulatory variants and prioritizing susceptibility genes of liver diseases, such as NAFLD.
Collapse
Affiliation(s)
- Ruofan Li
- Medical School of Chinese People's Liberation Army (PLA), 28 Fuxing Road, 100853, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Kaiyan Su
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1,838 North Guangzhou Ave, Guangzhou, Guangdong, 510515, China
| | - Tianzhun Wu
- Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Li Xu
- Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenyu Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Dandan Sun
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tao Zeng
- Medical School of Chinese People's Liberation Army (PLA), 28 Fuxing Road, 100853, Beijing, China
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1,838 North Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
| | - Haibei Xin
- Department of Hepatobiliary Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Mengya Zang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, 1,838 North Guangzhou Ave, Guangzhou, Guangdong, 510515, China.
| | - Minggen Hu
- Medical School of Chinese People's Liberation Army (PLA), 28 Fuxing Road, 100853, Beijing, China.
- Faculty of Hepato-Biliary-Pancreatic Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
2
|
Heng TH, Walter K, Huang QQ, Karjalainen J, Daly MJ, Heyne HO, Malawsky DS, Kalantzis G, Finer S, van Heel DA, Martin HC. Widespread recessive effects on common diseases in a cohort of 44,000 British Pakistanis and Bangladeshis with high autozygosity. Am J Hum Genet 2025:S0002-9297(25)00141-7. [PMID: 40306283 DOI: 10.1016/j.ajhg.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Genetic association studies have focused on testing additive models in cohorts with European ancestry. Little is known about recessive effects on common diseases, specifically for non-European ancestry. Genes & Health is a cohort of British Pakistani and Bangladeshi individuals with elevated rates of consanguinity and endogamy, making it suitable to study recessive effects. We imputed variants into a genotyped dataset (n = 44,190) by using two reference panels: a set of 4,982 whole-exome sequences from within the cohort and the Trans-Omics for Precision Medicine (TOPMed-r2) panel. We performed association testing with 898 diseases from electronic health records. 185 independent loci reached genome-wide significance (p < 5 × 10-8) under the recessive model, with p values lower than under the additive model, and >40% of these were novel. 140 loci demonstrated nominally significant (p < 0.05) dominance deviation p values, confirming a recessive association pattern. Sixteen loci in three clusters were significant at a Bonferroni threshold, accounting for multiple phenotypes tested (p < 5.4 × 10-12). In FinnGen, we replicated 44% of the expected number of Bonferroni-significant loci we were powered to replicate, at least one from each cluster, including an intronic variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3; rs66812091) and non-alcoholic fatty liver disease, a previously reported additive association. We present evidence suggesting that the association is recessive instead (odds ratio [OR] = 1.3, recessive p = 2 × 10-12, additive p = 2 × 10-11, dominance deviation p = 3 × 10-2, and FinnGen recessive OR = 1.3 and p = 6 × 10-12). We identified a novel protective recessive association between a missense variant in SGLT4 (rs61746559), a sodium-glucose transporter with a possible role in the renin-angiotensin-aldosterone system, and hypertension (OR = 0.2, p = 3 × 10-8, dominance deviation p = 7 × 10-6). These results motivate interrogating recessive effects on common diseases more widely.
Collapse
Affiliation(s)
- Teng Hiang Heng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Mark J Daly
- Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Henrike O Heyne
- Broad Institute, 415 Main Street, Cambridge, MA 02142, USA; Hasso Plattner Institute, 14482 Potsdam, Germany
| | - Daniel S Malawsky
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Sarah Finer
- Wolfson Institute for Population Health, Queen Mary University of London, London E1 4NS, UK
| | - David A van Heel
- Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
3
|
Passamonti MM, Milanesi M, Cattaneo L, Ramirez-Diaz J, Stella A, Barbato M, Braz CU, Negrini R, Giannuzzi D, Pegolo S, Cecchinato A, Trevisi E, Williams JL, Ajmone Marsan P. Unraveling metabolic stress response in dairy cows: Genetic control of plasma biomarkers throughout lactation and the transition period. J Dairy Sci 2024; 107:9602-9614. [PMID: 38945260 DOI: 10.3168/jds.2023-24630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Breeding animals able to effectively respond to stress could be a long-term, sustainable, and affordable strategy to improve resilience and welfare in livestock systems. In the present study, the concentrations of 29 plasma biomarkers were used as candidate endophenotypes for metabolic stress response in single-SNP, gene- and haplotype-based GWAS using 739 healthy lactating Italian Holstein cows and 88,271 variants. Significant genetic associations were found in all the 3 GWAS approaches for plasma γ-glutamyl transferase concentration on BTA17, for paraoxonase on BTA4, and for alkaline phosphatase and zinc on BTA2. On these chromosomes, single-SNP and gene-based chromosome-wide association studies were performed, confirming GWAS findings. The signals identified for paraoxonase, γ-glutamyl transferase, and alkaline phosphatase were in proximity to the genes coding for them. The heritability of these 4 biomarkers ranged from moderate to high (from 0.39 to 0.54). Plasma biomarkers are known to undergo large changes in concentration during metabolic stress in the transition period, with an interindividual variability in the rate of change and recovery time. Genetics may account in part for these differences. To assess this, we studied a subset of 139 periparturient cows homozygous at 3 SNPs known to be respectively associated with concentration of plasma ceruloplasmin, paraoxonase, and γ-glutamyl transferase. We compared the immune-metabolic profile measured in plasma at -7, +5, and +30 d relative to calving between groups of opposite homozygotes. A significant effect of the genotype was found on paraoxonase and γ-glutamyl transferase plasma concentration at all the 3 time points. No evidence for genotype effect was detected for ceruloplasmin. Understanding the genetic control underlying metabolic stress response may suggest new approaches to foster resilience in dairy cows.
Collapse
Affiliation(s)
- M M Passamonti
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Milanesi
- Department for Innovation in Biological, Agro-food and Forest Systems-DIBAF, Università della Tuscia, 01100 Viterbo, Italy
| | - L Cattaneo
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J Ramirez-Diaz
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy
| | - A Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy
| | - M Barbato
- Department of Veterinary Sciences, Università degli Studi di Messina, 98168 Messina, Italy
| | - C U Braz
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - R Negrini
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - E Trevisi
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production-CREI, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J L Williams
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - P Ajmone Marsan
- Department of Animal Science, Food and Nutrition-DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; Romeo and Enrica Invernizzi Research Center on Sustainable Dairy Production-CREI, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
4
|
Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes. Nat Commun 2022; 13:5332. [PMID: 36088354 PMCID: PMC9464252 DOI: 10.1038/s41467-022-32864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Here we present an exome-wide rare genetic variant association study for 30 blood biomarkers in 191,971 individuals in the UK Biobank. We compare gene-based association tests for separate functional variant categories to increase interpretability and identify 193 significant gene-biomarker associations. Genes associated with biomarkers were ~ 4.5-fold enriched for conferring Mendelian disorders. In addition to performing weighted gene-based variant collapsing tests, we design and apply variant-category-specific kernel-based tests that integrate quantitative functional variant effect predictions for missense variants, splicing and the binding of RNA-binding proteins. For these tests, we present a computationally efficient combination of the likelihood-ratio and score tests that found 36% more associations than the score test alone while also controlling the type-1 error. Kernel-based tests identified 13% more associations than their gene-based collapsing counterparts and had advantages in the presence of gain of function missense variants. We introduce local collapsing by amino acid position for missense variants and use it to interpret associations and identify potential novel gain of function variants in PIEZO1. Our results show the benefits of investigating different functional mechanisms when performing rare-variant association tests, and demonstrate pervasive rare-variant contribution to biomarker variability.
Collapse
|
5
|
Auwerx C, Lepamets M, Sadler MC, Patxot M, Stojanov M, Baud D, Mägi R, Porcu E, Reymond A, Kutalik Z. The individual and global impact of copy-number variants on complex human traits. Am J Hum Genet 2022; 109:647-668. [PMID: 35240056 PMCID: PMC9069145 DOI: 10.1016/j.ajhg.2022.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Maarja Lepamets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Marie C Sadler
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland.
| |
Collapse
|
6
|
Horinouchi T, Maeyama K, Nagai M, Mizobuchi M, Takagi Y, Okada Y, Kato T, Nishimura M, Kawasaki Y, Yoshioka M, Takada S, Matsumoto H, Nakamachi Y, Saegusa J, Fukushima S, Fujioka K, Tomioka K, Nagase H, Nozu K, Iijima K, Nishimura N. Genetic Analysis of UGT1A1 Polymorphisms Using Preserved Dried Umbilical Cord for Assessing the Potential of Neonatal Jaundice as a Risk Factor for Autism Spectrum Disorder in Children. J Autism Dev Disord 2022; 52:483-489. [PMID: 33730321 DOI: 10.1007/s10803-021-04941-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
Neonatal jaundice has been suggested as a perinatal risk factor for autism spectrum disorder (ASD). We examined UGT1A1 polymorphisms to assess the potential of neonatal jaundice as a risk factor for ASD in children by using DNA extracted from preserved umbilical cord. In total, 79 children with ASD were genotyped for UGT1A1*28 (c.-41-40dup), UGT1A1*6 (c.211 G > A), and UGT1A1*27 (c.686 C > A). The allele frequency of UGT1A1*6 (OR = 1.34, p = 0.26) and UGT1A1*28 (OR = 0.80, p = 0.54) and the prevalence of UGT1A1*28/*6 diplotypes did not differ significantly from those in the control population. No UGT1A1*27 allele was detected in the subjects. ASD symptom assessment scores were not associated with UGT1A1*28/*6/*27 genotypes or UGT1A1*28/*6 diplotypes. These results suggest that neonatal jaundice is not significantly associated with ASD.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kaori Maeyama
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Palmore Hospital, Kobe, Japan
| | - Masashi Nagai
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Metabolic Endocrinology, Kobe Children's Hospital, Kobe, Japan
| | - Masami Mizobuchi
- Department of Developmental Pediatrics, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Yasuko Takagi
- General Pediatric and Rehabilitation Center for the Disabled, Kobe, Japan
| | - Yuka Okada
- Eastern Pediatric and Rehabilitation Center for the Disabled, Kobe, Japan
| | - Takeshi Kato
- Western Pediatric and Rehabilitation Center for the Disabled, Kobe, Japan
| | | | | | - Mieko Yoshioka
- General Pediatric and Rehabilitation Center for the Disabled, Kobe, Japan
| | - Satoshi Takada
- General Pediatric and Rehabilitation Center for the Disabled, Kobe, Japan
| | | | - Yuji Nakamachi
- Division of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Jun Saegusa
- Division of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumi Tomioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroaki Nagase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Public Health, Kobe University Graduate School of Health Science, 7-10-2 Tomogaoka, Suma-ku, Kobe, 654-0142, Japan.
| |
Collapse
|
7
|
Venkataraman GR, DeBoever C, Tanigawa Y, Aguirre M, Ioannidis AG, Mostafavi H, Spencer CCA, Poterba T, Bustamante CD, Daly MJ, Pirinen M, Rivas MA. Bayesian model comparison for rare-variant association studies. Am J Hum Genet 2021; 108:2354-2367. [PMID: 34822764 PMCID: PMC8715195 DOI: 10.1016/j.ajhg.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.
Collapse
Affiliation(s)
| | - Christopher DeBoever
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Yosuke Tanigawa
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Matthew Aguirre
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Timothy Poterba
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Carlos D Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00014, Finland; Department of Public Health, University of Helsinki, Helsinki 00014, Finland; Department of Mathematics and Statistics, University of Helsinki, Helsinki 00014, Finland.
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
López-Bautista F, Posadas-Sánchez R, Vargas-Alarcón G. Association of the IL-37 Polymorphisms with Transaminases and Alkaline Phosphatase Levels in Premature Coronary Artery Disease Patients and Healthy Controls. Results of the Genetics of Atherosclerotic (GEA) Mexican Study. Diagnostics (Basel) 2021; 11:diagnostics11061018. [PMID: 34199391 PMCID: PMC8227963 DOI: 10.3390/diagnostics11061018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
Interleukin 37 (IL-37) is an anti-inflammatory cytokine expressed in foam cells located in the atherosclerosis plaques. The present study aimed to evaluate the association of the IL-37 polymorphisms with premature coronary artery disease (pCAD), cardiovascular risk factors, metabolic parameters, and levels of liver enzymes. Three IL-37 polymorphisms (rs6717710, rs2708961, and rs2708947) were determined in 1161 patients with pCAD and 951 healthy controls. IL-37 polymorphisms were not associated with the presence of pCAD. The association of the polymorphisms with cardiovascular risk factors, metabolic parameters, and levels of liver enzymes was evaluated independently in pCAD and healthy controls. In pCAD patients, under different models, the rs6717710 was associated with low risk of having elevated alkaline phosphatase (ALP) (padditive = 0.020; pdominant = 0.02; pheterozygous = 0.04; pcodominant1 = 0.040). On the other hand, in healthy controls, the rs6717710 was associated with low risk of having elevated levels of alanine aminotransferase (ALT) (padditive = 0.04, precessive = 0.01, pcodominant2 = 0.01) and aspartate aminotransferase (AST) (padditive = 0.02, pdominant = 0.02). The IL-37 polymorphisms were not associated with the risk of pCAD. In pCAD patients, the rs6717710 was associated with low risk of having elevated ALP levels, whereas in controls was associated with low risk of having elevated ALT and AST levels.
Collapse
Affiliation(s)
- Fabiola López-Bautista
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Rosalinda Posadas-Sánchez
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico;
- Correspondence: ; Tel.: +52-5573-2911 (ext. 20134)
| |
Collapse
|