1
|
Sachdeva M, Taneja S, Sachdeva N. Stem cell-like memory T cells: Role in viral infections and autoimmunity. World J Immunol 2023; 13:11-22. [DOI: 10.5411/wji.v13.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
Stem cell-like memory T (TSCM) cells possess stem cell properties including multipotency and self-renewal and are being recognized as emerging players in various human diseases. Advanced technologies such as multiparametric flowcytometry and single cell sequencing have enabled their identification and molecular characterization. In case of chronic viral diseases such as human immunodeficiency virus-1, CD4+ TSCM cells, serve as major reservoirs of the latent virus. However, during immune activation and functional exhaustion of effector T cells, these cells also possess the potential to replenish the pool of functional effector cells to curtail the infection. More recently, these cells are speculated to play important role in protective immunity following acute viral infections such as coronavirus disease 2019 and might be amenable for therapeutics by ex vivo expansion. Similarly, studies are also investigating their pathological role in driving autoimmune responses. However, there are several gaps in the understanding of the role of TSCM cells in viral and autoimmune diseases to make them potential therapeutic targets. In this minireview, we have attempted an updated compilation of the dyadic role of these complex TSCM cells during such human diseases along with their biology and transcriptional programs.
Collapse
Affiliation(s)
- Meenakshi Sachdeva
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Shivangi Taneja
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
2
|
Koya T, Yoshida K, Togi M, Niida Y, Togi S, Ura H, Mizuta S, Kato T, Yamada S, Shibata T, Liu YC, Yuan SS, Wu DC, Kobayashi H, Utsugisawa T, Kanno H, Shimodaira S. Clinical Trial on the Safety and Tolerability of Personalized Cancer Vaccines Using Human Platelet Lysate-Induced Antigen-Presenting Cells. Cancers (Basel) 2023; 15:3627. [PMID: 37509288 PMCID: PMC10377585 DOI: 10.3390/cancers15143627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Research and development of personalized cancer vaccines as precision medicine are ongoing. We predicted human leukocyte antigen (HLA)-compatible cancer antigen candidate peptides based on patient-specific cancer genomic profiles and performed a Phase I clinical trial for the safety and tolerability of cancer vaccines with human platelet lysate-induced antigen-presenting cells (HPL-APCs) from peripheral monocytes. Among the five enrolled patients, two patients completed six doses per course (2-3 × 107 cells per dose), and an interim analysis was performed based on the immune response. An immune response was detected by enzyme-linked immunosorbent spot (ELISpot) assays to HLA-A*33:03-matched KRASWT, HLA-DRB1*09:01-compliant KRASWT or G12D, or HLA-A*31:01-matched SMAD4WT, and HLA-DRB1*04:01-matched SMAD4G365D peptides in two completed cases, respectively. Moreover, SMAD4WT-specific CD8+ effector memory T cells were amplified. However, an attenuation of the acquired immune response was observed 6 months after one course of cancer vaccination as the disease progressed. This study confirmed the safety and tolerability of HPL-APCs in advanced and recurrent cancers refractory to standard therapy and is the first clinical report to demonstrate the immunoinducibility of personalized cancer vaccines using HPL-APCs. Phase II clinical trials to determine immune responses with optimized adjuvant drugs and continued administration are expected to demonstrate efficacy.
Collapse
Affiliation(s)
- Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
| | - Kenichi Yoshida
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Sumihito Togi
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Hiroki Ura
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Shuichi Mizuta
- Department of Hematology and Immunology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Tomohisa Kato
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Takeo Shibata
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyng-Shiou Yuan
- Office of Research & Development, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Internal Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hirohito Kobayashi
- Division of Transfusion and Cell Therapy, Tokyo Women's Medical University, Adachi Medical Center, Adachi 123-8558, Tokyo, Japan
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku 162-8666, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku 162-8666, Tokyo, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Kahoku 920-0293, Ishikawa, Japan
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku 920-0293, Ishikawa, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Shinjuku 162-8666, Tokyo, Japan
| |
Collapse
|
3
|
Li Y, Wu D, Yang X, Zhou S. Immunotherapeutic Potential of T Memory Stem Cells. Front Oncol 2021; 11:723888. [PMID: 34604060 PMCID: PMC8485052 DOI: 10.3389/fonc.2021.723888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Memory T cells include T memory stem cells (TSCM) and central memory T cells (TCM). Compared with effector memory T cells (TEM) and effector T cells (TEFF), they have better durability and anti-tumor immunity. Recent studies have shown that although TSCM has excellent self-renewal ability and versatility, if it is often exposed to antigens and inflammatory signals, TSCM will behave as a variety of inhibitory receptors such as PD-1, TIM-3 and LAG-3 expression, and metabolic changes from oxidative phosphorylation to glycolysis. These changes can lead to the exhaustion of T cells. Cumulative evidence in animal experiments shows that it is the least differentiated cell in the memory T lymphocyte system and is a central participant in many physiological and pathological processes in humans. It has a good clinical application prospect, so it is more and more important to study the factors affecting the formation of TSCM. This article summarizes and prospects the phenotypic and functional characteristics of TSCM, the regulation mechanism of formation, and its application in treatment of clinical diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Dengqiang Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Xuejia Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China.,National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Wang Y, Qiu F, Xu Y, Hou X, Zhang Z, Huang L, Wang H, Xing H, Wu S. Stem cell-like memory T cells: The generation and application. J Leukoc Biol 2021; 110:1209-1223. [PMID: 34402104 DOI: 10.1002/jlb.5mr0321-145r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-like memory T cells (Tscm), are a newly defined memory T cell subset with characteristics of long life span, consistent self-renewing, rapid differentiation into effector T cells, and apoptosis resistance. These features indicate that Tscm have great therapeutic or preventive purposes, including being applied in chimeric Ag receptor-engineered T cells, TCR gene-modified T cells, and vaccines. However, the little knowledge about Tscm development restrains their applications. Strength and duration of TCR signaling, cytokines and metabolism in the T cells during activation all influence the Tscm development via regulating transcriptional factors and cell signaling pathways. Here, we summarize the molecular and cellular pathways involving Tscm differentiation, and its clinical application for cancer immunotherapy and prevention.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Yifan Xu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhili Zhang
- Clinical Laboratory Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Lei Huang
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Huijun Wang
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Hui Xing
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ponnan SM, Vidyavijayan KK, Thiruvengadam K, Hilda J N, Mathayan M, Murugavel KG, Hanna LE. Role of Circulating T Follicular Helper Cells and Stem-Like Memory CD4 + T Cells in the Pathogenesis of HIV-2 Infection and Disease Progression. Front Immunol 2021; 12:666388. [PMID: 33936106 PMCID: PMC8085399 DOI: 10.3389/fimmu.2021.666388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
CD4+ T cells are critical players in the host adaptive immune response. Emerging evidence suggests that certain CD4+ T cell subsets contribute significantly to the production of neutralizing antibodies and help in the control of virus replication. Circulating T follicular helper cells (Tfh) constitute a key T cell subset that triggers the adaptive immune response and stimulates the production of neutralizing antibodies (NAbs). T cells having stem cell-like property, called stem-like memory T cells (Tscm), constitute another important subset of T cells that play a critical role in slowing the rate of disease progression through the differentiation and expansion of different types of memory cell subsets. However, the role of these immune cell subsets in T cell homeostasis, CD4+ T cell proliferation, and progression of disease, particularly in HIV-2 infection, has not yet been elucidated. The present study involved a detailed evaluation of the different CD4+ T cell subsets in HIV-2 infected persons with a view to understanding the role of these immune cell subsets in the better control of virus replication and delayed disease progression that is characteristic of HIV-2 infection. We observed elevated levels of CD4+ Tfh and CD4+ Tscm cells along with memory and effector T cell abundance in HIV-2 infected individuals. We also found increased frequencies of CXCR5+ CD8+ T cells and CD8+ Tscm cells, as well as memory B cells that are responsible for NAb development in HIV-2 infected persons. Interestingly, we found that the frequency of memory CD4+ T cells as well as memory B cells correlated significantly with neutralizing antibody titers in HIV-2 infected persons. These observations point to a more robust CD4+ T cell response that supports B cell differentiation, antibody production, and CD8+ T cell development in HIV-2 infected persons and contributes to better control of the virus and slower rate of disease progression in these individuals.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - K K Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Kannan Thiruvengadam
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Nancy Hilda J
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Manikannan Mathayan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, India
| | | | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| |
Collapse
|
6
|
Munusamy Ponnan S, Thiruvengadam K, Kathirvel S, Shankar J, Rajaraman A, Mathaiyan M, Dinesha TR, Poongulali S, Saravanan S, Murugavel KG, Swaminathan S, Tripathy SP, Neogi U, Velu V, Hanna LE. Elevated Numbers of HIV-Specific Poly-Functional CD8 + T Cells With Stem Cell-Like and Follicular Homing Phenotypes in HIV-Exposed Seronegative Individuals. Front Immunol 2021; 12:638144. [PMID: 33889151 PMCID: PMC8056154 DOI: 10.3389/fimmu.2021.638144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
HIV-specific CD8+ T cells are known to play a key role in viral control during acute and chronic HIV infection. Although many studies have demonstrated the importance of HIV-specific CD8+ T cells in viral control, its correlation with protection against HIV infection remains incompletely understood. To better understand the nature of the immune response that contributes to the early control of HIV infection, we analyzed the phenotype, distribution and function of anti-viral CD8+ T cells in a cohort of HIV-exposed seronegative (HESN) women, and compared them with healthy controls and HIV-infected individuals. Further, we evaluated the in vitro viral inhibition activity of CD8+ T cells against diverse HIV-1 strains. We found that the HESN group had significantly higher levels of CD8+ T cells that express T-stem cell-like (TSCM) and follicular homing (CXCR5+) phenotype with more effector like characteristics as compared to healthy controls. Further, we observed that the HESN population had a higher frequency of HIV-specific poly-functional CD8+ T cells with robust in vitro virus inhibiting capacity against different clades of HIV. Overall, our results demonstrate that the HESN population has elevated levels of HIV-specific poly-functional CD8+ T cells with robust virus inhibiting ability and express elevated levels of markers pertaining to TSCM and follicular homing phenotype. These results demonstrate that future vaccine and therapeutic strategies should focus on eliciting these critical CD8+ T cell subsets.
Collapse
Affiliation(s)
- Sivasankaran Munusamy Ponnan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India.,Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Kannan Thiruvengadam
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Sujitha Kathirvel
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Janani Shankar
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Akshaya Rajaraman
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Manikannan Mathaiyan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | | | - Selvamuthu Poongulali
- Chennai Antiviral Research and Treatment Centre and Clinical Research Site (CART CRS), Infectious Diseases Medical Center, Voluntary Health Services (VHS), Chennai, India
| | | | | | - Soumya Swaminathan
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Srikanth Prasad Tripathy
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Luke Elizabeth Hanna
- National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| |
Collapse
|
7
|
Stem cell-like memory T cells: A perspective from the dark side. Cell Immunol 2021; 361:104273. [PMID: 33422699 DOI: 10.1016/j.cellimm.2020.104273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Much attention has been paid to a newly discovered subset of memory T (TM) cells-stem cell-like memory T (TSCM) cells for their high self-renewal ability, multi-differentiation potential and long-term effector function in adoptive therapy against tumors. Despite their application in cancer therapy, an excess of TSCM cells also contributes to the persistence of autoimmune diseases for their immune memory and HIV infection as a long-lived HIV reservoir. Signaling pathways Wnt, AMPK/mTOR and NF-κB are key determinants for TM cell generation, maintenance and proinflammatory effect. In this review, we focus on the phenotypic and functional characteristics of TSCM cells and discuss their role in autoimmune diseases and HIV-1 chronic infection. Also, we explore the potential mechanism and signaling pathways involved in immune memory and look into the future therapy strategies of targeting long-lived TM cells to suppress pathogenic immune memory.
Collapse
|