1
|
Kar SS, Cetin H, Srivastava SK, Madabhushi A, Ehlers JP. Stable and discriminating OCT-derived radiomics features for predicting anti-VEGF treatment response in diabetic macular edema. Med Phys 2025; 52:2762-2772. [PMID: 40085126 PMCID: PMC12059529 DOI: 10.1002/mp.17695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Radiomics-based characterization of fluid and retinal tissue compartments of spectral-domain optical coherence tomography (SD-OCT) scans has shown promise to predict anti-VEGF therapy treatment response in diabetic macular edema (DME). Radiomics features are sensitive to different image acquisition parameters of OCT scanners such as axial resolution, A-scan rate, and voxel size; consequently, the predictive capability of the radiomics features might be impacted by inter-site and inter-scanner variations. PURPOSE The main objective of this study was (1) to develop a more generalized classifier by identifying the OCT-derived texture-based radiomics features that are both stable (across multiple scanners) as well as discriminative of therapeutic response in DME and (2) to identify the relative stability of individual radiomic features that are associated with specific spatial compartments (e/g. fluid or tissue) within the eye. METHODS A combination of 151 optimal responders and rebounders of anti-VEGF therapy in DME were included from the PERMEATE (imaged using Cirrus HD-OCT scanner) and VISTA clinical trials (imaged using Cirrus HD-OCT and Spectralis scanners). For each patient within the study, a set of 494 texture-based radiomics features were extracted from the fluid and the retinal tissue compartment of OCT images. The training set (S t ${{S}_t}$ ) included 76 patients and the independent test set( S v $({{S}_v}$ ) comprised of 75 patients. Features were ranked based on (i) only discriminability criteria, that is, maximizing area under the receiver operating characteristic curve (AUC) and (ii) both stability and discriminability criteria. The subset of radiomic features for which the feature expression remained relatively consistent between the two datasets, as assessed by Wilcoxon rank-sum test, were considered to be stable. Different machine learning (ML) classifiers (such as k-nearest neighbors, Random Forest, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Support Vector Machine using linear and radial basis kernel, Naive Bayes) were trained using the features selected based on both the stability and discriminability criteria onS t ${{S}_t}$ and then subsequently validated onS v ${{S}_v}$ . The ML classifier (M g ${{M}_g}$ ) that yielded maximum AUC onS v ${{S}_v}$ was considered to be more generalized and stable for distinguishing anti-VEGF therapy treatment response as well as less sensitive to the effect of inter-site and inter-scanner variability. RESULTS The modelM g ${{M}_g}$ (based on both stability and discriminability criteria) achieved higher AUC compared to the criteria based off feature discrimination alone onS v ${{S}_v}$ (maximum AUCs of 0.9 versus 0.81; p-value = 0.048). The texture-based radiomic features pertaining to the retinal tissue compartment were found to be more stable compared to the fluid related features across the two datasets. CONCLUSIONS Our study suggests that incorporating both stable and discriminatory texture-based radiomic features extracted from fluid and retinal tissue compartments of OCT scans, a more generalized radiomic classifier can be developed to predict therapeutic response in DME. Also, the feature stability was found to be a function of the spatial location within the eye from where the features were extracted.
Collapse
Affiliation(s)
- Sudeshna Sil Kar
- Department of Biomedical EngineeringEmory UniversityAtlantaGeorgiaUSA
| | - Hasan Cetin
- The Tony and Leona Campane Center for Excellence in Image‐Guided Surgery and Advanced Imaging ResearchCole Eye InstituteCleveland ClinicClevelandOhioUSA
| | - Sunil K. Srivastava
- The Tony and Leona Campane Center for Excellence in Image‐Guided Surgery and Advanced Imaging ResearchCole Eye InstituteCleveland ClinicClevelandOhioUSA
- Novartis PharmaceuticalsEast HanoverNew JerseyUSA
| | - Anant Madabhushi
- Department of Biomedical EngineeringEmory UniversityAtlantaGeorgiaUSA
- Atlanta VA Medical CenterAtlantaGeorgiaUSA
| | - Justis P. Ehlers
- The Tony and Leona Campane Center for Excellence in Image‐Guided Surgery and Advanced Imaging ResearchCole Eye InstituteCleveland ClinicClevelandOhioUSA
- Vitreoretinal ServiceCole Eye InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
2
|
Alberts IL, Xue S, Sari H, Cavinato L, Prenosil G, Afshar-Oromieh A, Mingels C, Shi K, Caobelli F, Rahmim A, Pyka T, Rominger A. Long-axial field-of-view PET/CT improves radiomics feature reliability. Eur J Nucl Med Mol Imaging 2025; 52:1004-1016. [PMID: 39477863 DOI: 10.1007/s00259-024-06921-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 01/23/2025]
Abstract
PURPOSE To assess the influence of long-axial field-of-view (LAFOV) PET/CT systems on radiomics feature reliability, to assess the suitability for short-duration or low-activity acquisitions for textural feature analysis and to investigate the influence of acceptance angle. METHODS 34 patients were analysed: twelve patients underwent oncological 2-[18F]-FDG PET/CT, fourteen [18F]PSMA-1007 and eight [68Ga]Ga-DOTATOC. Data were obtained using a 106 cm LAFOV system for 10 min. Sinograms were generated from list-mode data corresponding to scan durations of 2, 5, 10, 20, 30, 60, 120, 240, 360 and 600s using both standard (minimum ring difference MRD 85 crystals) and maximum acceptance angles (MRD 322). Target lesions were segmented and radiomics features were calculated. To assess feature correlation, Pearson's product-moment correlation coefficient (PPMCC) was calculated with respect to the full duration acquisition for MRD 85 and 322 respectively. The number of features with excellent (r > 0.9), moderate (r > 0.7 and < 0.9) and poor (r ≤ 0.7) correlation was compared as a measure of feature stability. Intra-class heterogeneity was assessed by means of the quartile coefficient of dispersion. RESULTS As expected, PPMCC improved with acquisition time for all features. By 240s almost all features showed at least moderate agreement with the full count (C100%) data, and by 360s almost all showed excellent agreement. Compared to standard-axial field of view (SAFOV) equivalent scans, fewer features showed moderate or poor agreement, and this was most pronounced for [68Ga]Ga-DOTATOC. Data obtained at C100% at MRD 322 were better able to capture between-patient heterogeneities. CONCLUSION The improved feature reliability at longer acquisition times and higher MRD demonstrate the advantages of high sensitivity LAFOV systems for reproducible and low-noise data. High fidelity between MRD 85 and MRD 322 was seen at all scan durations > 2s. When contrasted with data comparable to a simulated SAFOV acquisition, full-count and full-MRD data were better able to capture underlying feature heterogeneities.
Collapse
Affiliation(s)
- Ian L Alberts
- Molecular Imaging and Therapy, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 1H5, Canada.
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Lara Cavinato
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Laboratory for Modelling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milan, 20133, Italy
| | - George Prenosil
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Arman Rahmim
- Molecular Imaging and Therapy, BC Cancer - Vancouver, 600 West 10th Ave, Vancouver, BC, V5Z 1H5, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Kallos-Balogh P, Vas NF, Toth Z, Szakall S, Szabo P, Garai I, Kepes Z, Forgacs A, Szatmáriné Egeresi L, Magnus D, Balkay L. Multicentric study on the reproducibility and robustness of PET-based radiomics features with a realistic activity painting phantom. PLoS One 2024; 19:e0309540. [PMID: 39446842 PMCID: PMC11500893 DOI: 10.1371/journal.pone.0309540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Previously, we developed an "activity painting" tool for PET image simulation; however, it could simulate heterogeneous patterns only in the air. We aimed to improve this phantom technique to simulate arbitrary lesions in a radioactive background to perform relevant multi-center radiomic analysis. We conducted measurements moving a 22Na point source in a 20-liter background volume filled with 5 kBq/mL activity with an adequately controlled robotic system to prevent the surge of the water. Three different lesion patterns were "activity-painted" in five PET/CT cameras, resulting in 8 different reconstructions. We calculated 46 radiomic indeces (RI) for each lesion and imaging setting, applying absolute and relative discretization. Reproducibility and reliability were determined by the inter-setting coefficient of variation (CV) and the intraclass correlation coefficient (ICC). Hypothesis tests were used to compare RI between lesions. By simulating precisely the same lesions, we confirmed that the reconstructed voxel size and the spatial resolution of different PET cameras were critical for higher order RI. Considering conventional RIs, the SUVpeak and SUVmean proved the most reliable (CV<10%). CVs above 25% are more common for higher order RIs, but we also found that low CVs do not necessarily imply robust parameters but often rather insensitive RIs. Based on the hypothesis test, most RIs could clearly distinguish between the various lesions using absolute resampling. ICC analysis also revealed that most RIs were more reproducible with absolute discretization. The activity painting method in a real radioactive environment proved suitable for precisely detecting the radiomic differences derived from the different camera settings and texture characteristics. We also found that inter-setting CV is not an appropriate metric for analyzing RI parameters' reliability and robustness. Although multicentric cohorts are increasingly common in radiomics analysis, realistic texture phantoms can provide indispensable information on the sensitivity of an RI and how an individual RI parameter measures the texture.
Collapse
Affiliation(s)
- Piroska Kallos-Balogh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norman Felix Vas
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Toth
- Medicopus Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | | | | | - Ildiko Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Scanomed Ltd., Debrecen, Debrecen, Hungary
| | - Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dahlbom Magnus
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
4
|
Mei R, Pyka T, Sari H, Fanti S, Afshar-Oromieh A, Giger R, Caobelli F, Rominger A, Alberts I. The clinical acceptability of short versus long duration acquisitions for head and neck cancer using long-axial field-of-view PET/CT: a retrospective evaluation. Eur J Nucl Med Mol Imaging 2024; 51:1436-1443. [PMID: 38095670 PMCID: PMC10957684 DOI: 10.1007/s00259-023-06516-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 03/22/2024]
Abstract
PURPOSE To evaluate the utility of long duration (10 min) acquisitions compared to standard 4 min scans in the evaluation of head and neck cancer (HNC) using a long-axial field-of-view (LAFOV) system in 2-[18F]FDG PET/CT. METHODS HNC patients undergoing LAFOV PET/CT were included retrospectively according to a predefined sample size calculation. For each acquisition, FDG avid lymph nodes (LN) which were highly probable or equivocal for malignancy were identified by two board certified nuclear medicine physicians in consensus. The aim of this study was to establish the clinical acceptability of short-duration (4 min, C40%) acquisitions compared to full-count (10 min, C100%) in terms of the detection of LN metastases in HNC. Secondary endpoints were the positive predictive value for LN status (PPV) and comparison of SUVmax at C40% and C100%. Histology reports or confirmatory imaging were the reference standard. RESULTS A total of 1218 records were screened and target recruitment was met with n = 64 HNC patients undergoing LAFOV. Median age was 65 years (IQR: 59-73). At C40%, a total of 387 lesions were detected (highly probable LN n = 274 and equivocal n = 113. The total number of lesions detected at C100% acquisition was 439, of them 291 (66%) highly probable LN and 148 (34%) equivocal. Detection rate between the two acquisitions did not demonstrate any significant differences (Pearson's Chi-Square test, p = 0.792). Sensitivity, specificity, PPV, NPV and accuracy for C40% were 83%, 44%, 55%, 76% and 36%, whilst for C100% were 85%, 56%, 55%, 85% and 43%, respectively. The improved accuracy reached borderline significance (p = 0.057). At the ROC analysis, lower SUVmax was identified for C100% (3.5) compared to C40% (4.5). CONCLUSION In terms of LN detection, C40% acquisitions showed no significant difference compared to the C100% acquisitions. There was some improvement for lesions detection at C100%, with a small increment in accuracy reaching borderline significance, suggestive that the higher sensitivity afforded by LAFOV might translate to improved clinical performance in some patients.
Collapse
Affiliation(s)
- Riccardo Mei
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Stefano Fanti
- Nuclear Medicine Department, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Roland Giger
- Department of Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada
| |
Collapse
|
5
|
Alberts I, Sari H, Mingels C, Afshar-Oromieh A, Pyka T, Shi K, Rominger A. Long-axial field-of-view PET/CT: perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023; 23:28. [PMID: 36934273 PMCID: PMC10024603 DOI: 10.1186/s40644-023-00540-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Recently introduced long-axial field-of-view (LAFOV) PET/CT systems represent one of the most significant advancements in nuclear medicine since the advent of multi-modality PET/CT imaging. The higher sensitivity exhibited by such systems allow for reductions in applied activity and short duration scans. However, we consider this to be just one small part of the story: Instead, the ability to image the body in its entirety in a single FOV affords insights which standard FOV systems cannot provide. For example, we now have the ability to capture a wider dynamic range of a tracer by imaging it over multiple half-lives without detrimental image noise, to leverage lower radiopharmaceutical doses by using dual-tracer techniques and with improved quantification. The potential for quantitative dynamic whole-body imaging using abbreviated protocols potentially makes these techniques viable for routine clinical use, transforming PET-reporting from a subjective analysis of semi-quantitative maps of radiopharmaceutical uptake at a single time-point to an accurate and quantitative, non-invasive tool to determine human function and physiology and to explore organ interactions and to perform whole-body systems analysis. This article will share the insights obtained from 2 years' of clinical operation of the first Biograph Vision Quadra (Siemens Healthineers) LAFOV system. It will also survey the current state-of-the-art in PET technology. Several technologies are poised to furnish systems with even greater sensitivity and resolution than current systems, potentially with orders of magnitude higher sensitivity. Current barriers which remain to be surmounted, such as data pipelines, patient throughput and the hindrances to implementing kinetic analysis for routine patient care will also be discussed.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
6
|
Mingels C, Weidner S, Sari H, Buesser D, Zeimpekis K, Shi K, Alberts I, Rominger A. Impact of the new ultra-high sensitivity mode in a long axial field-of-view PET/CT. Ann Nucl Med 2023; 37:310-315. [PMID: 36913094 PMCID: PMC10129991 DOI: 10.1007/s12149-023-01827-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE Long axial field-of-view (LAFOV) PET/CT showed improved performance resulting from higher sensitivity. The aim was to quantify the impact of using the full acceptance angle (UHS) in image reconstructions with the Biograph Vision Quadra LAFOV PET/CT (Siemens Healthineers) compared to the limited acceptance angle (high sensitivity mode, HS). METHODS 38 oncological patients examined on a LAFOV Biograph Vision Quadra PET/CT were analysed. 15 patients underwent [18F]FDG-PET/CT, 15 patients underwent [18F]PSMA-1007 PET/CT, and 8 patients underwent [68Ga]Ga-DOTA-TOC PET/CT. Signal-to-noise ratio (SNR) and standardised uptake values (SUVmean/max/peak) were used to compare UHS and HS with different acquisition times. RESULTS The SNR was significantly higher for UHS compared to HS over all acquisition times (SNR UHS/HS [18F]FDG: 1.35 ± 0.02, p < 0.001; [18F]PSMA-1007: 1.25 ± 0.02, p < 0.001; [68Ga]Ga-DOTA-TOC: 1.29 ± 0.02, p < 0.001). CONCLUSION UHS showed significantly higher SNR opening the possibility of halving short acquisition times. This is of advantage in further reduction of whole-body PET/CT acquisition.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Sabine Weidner
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Dorothee Buesser
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland
| | - Konstantinos Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street: Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|
7
|
Prenosil GA, Hentschel M, Weitzel T, Sari H, Shi K, Afshar-Oromieh A, Rominger A. EARL compliance measurements on the biograph vision Quadra PET/CT system with a long axial field of view. EJNMMI Phys 2022; 9:26. [PMID: 35394263 PMCID: PMC8994003 DOI: 10.1186/s40658-022-00455-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Background Our aim was to determine sets of reconstruction parameters for the Biograph Vision Quadra (Siemens Healthineers) PET/CT system that result in quantitative images compliant with the European Association of Nuclear Medicine Research Ltd. (EARL) criteria. Using the Biograph Vision 600 (Siemens Healthineers) PET/CT technology but extending the axial field of view to 106 cm, gives the Vision Quadra currently an around fivefold higher sensitivity over the Vision 600 with otherwise comparable spatial resolution. Therefore, we also investigated how the number of incident positron decays—i.e., exposure—affects EARL compliance. This will allow estimating a minimal acquisition time or a minimal applied dose in clinical scans while retaining data comparability. Methods We measured activity recovery curves on a NEMA IEC body phantom filled with an aqueous 18F solution and a sphere to background ratio of 10–1 according to the latest EARL guidelines. Reconstructing 3570 image sets with varying OSEM PSF iterations, post-reconstruction Gaussian filter full width at half maximum (FWHM), and varying exposure from 59 kDecays/ml (= 3 s frame duration) to 59.2 MDecays/ml (= 1 h), allowed us to determine sets of parameters to achieve compliance with the current EARL 1 and EARL 2 standards. Recovery coefficients (RCs) were calculated for the metrics RCmax, RCmean, and RCpeak, and the respective recovery curves were analyzed for monotonicity. The background’s coefficient of variation (COV) was also calculated. Results Using 6 iterations, 5 subsets and 7.8 mm Gauss filtering resulted in optimal EARL1 compliance and recovery curve monotonicity in all analyzed frames, except in the 3 s frames. Most robust EARL2 compliance and monotonicity were achieved with 2 iterations, 5 subsets, and 3.6 mm Gauss FWHM in frames with durations between 30 s and 10 min. RCpeak only impeded EARL2 compliance in the 10 s and 3 s frames. Conclusions While EARL1 compliance was robust over most exposure ranges, EARL2 compliance required exposures between 1.2 MDecays/ml to 11.5 MDecays/ml. The Biograph Vision Quadra’s high sensitivity makes frames as short as 10 s feasible for comparable quantitative images. Lowering EARL2 RCmax limits closer to unity would possibly even permit shorter frames.
Collapse
Affiliation(s)
- George A Prenosil
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Michael Hentschel
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Thilo Weitzel
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital Bern, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
8
|
Basak AK, Mirzaei M, Strzałka K, Yamada K. Texture feature extraction from microscope images enables a robust estimation of ER body phenotype in Arabidopsis. PLANT METHODS 2021; 17:109. [PMID: 34702318 PMCID: PMC8549183 DOI: 10.1186/s13007-021-00810-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/17/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cellular components are controlled by genetic and physiological factors that define their shape and size. However, quantitively capturing the morphological characteristics and movement of cellular organelles from micrograph images is challenging, because the analysis deals with complexities of images that frequently lead to inaccuracy in the estimation of the features. Here we show a unique quantitative method to overcome biases and inaccuracy of biological samples from confocal micrographs. RESULTS We generated 2D images of cell walls and spindle-shaped cellular organelles, namely ER bodies, with a maximum contrast projection of 3D confocal fluorescent microscope images. The projected images were further processed and segmented by adaptive thresholding of the fluorescent levels in the cell walls. Micrographs are composed of pixels, which have information on position and intensity. From the pixel information we calculated three types of features (spatial, intensity and Haralick) in ER bodies corresponding to segmented cells. The spatial features include basic information on shape, e.g., surface area and perimeter. The intensity features include information on mean, standard deviation and quantile of fluorescence intensities within an ER body. Haralick features describe the texture features, which can be calculated mathematically from the interrelationship between the pixel information. Together these parameters were subjected to multivariate analysis to estimate the morphological diversity. Additionally, we calculated the displacement of the ER bodies using the positional information in time-lapse images. We captured similar morphological diversity and movement within ER body phenotypes in several microscopy experiments performed in different settings and scanned under different objectives. We then described differences in morphology and movement of ER bodies between A. thaliana wild type and mutants deficient in ER body-related genes. CONCLUSIONS The findings unexpectedly revealed multiple genetic factors that are involved in the shape and size of ER bodies in A. thaliana. This is the first report showing morphological characteristics in addition to the movement of cellular components and it quantitatively summarises plant phenotypic differences even in plants that show similar cellular components. The estimation of morphological diversity was independent of the cell staining method and the objective lens used in the microscopy. Hence, our study enables a robust estimation of plant phenotypes by recognizing small differences in complex cell organelle shapes and their movement, which is beneficial in a comprehensive analysis of the molecular mechanism for cell organelle formation that is independent of technical variations.
Collapse
Affiliation(s)
- Arpan Kumar Basak
- Faculty of Biology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Krakow, Poland
| | - Kenji Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Alberts I, Hünermund JN, Prenosil G, Mingels C, Bohn KP, Viscione M, Sari H, Vollnberg B, Shi K, Afshar-Oromieh A, Rominger A. Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur J Nucl Med Mol Imaging 2021; 48:2395-2404. [PMID: 33797596 PMCID: PMC8241747 DOI: 10.1007/s00259-021-05282-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To investigate the performance of the new long axial field-of-view (LAFOV) Biograph Vision Quadra PET/CT and a standard axial field-of-view (SAFOV) Biograph Vision 600 PET/CT (both: Siemens Healthineers) system using an intra-patient comparison. METHODS Forty-four patients undergoing routine oncological PET/CT were prospectively included and underwent a same-day dual-scanning protocol following a single administration of either 18F-FDG (n = 20), 18F-PSMA-1007 (n = 16) or 68Ga-DOTA-TOC (n = 8). Half the patients first received a clinically routine examination on the SAFOV (FOVaxial 26.3 cm) in continuous bed motion and then immediately afterwards on the LAFOV system (10-min acquisition in list mode, FOVaxial 106 cm); the second half underwent scanning in the reverse order. Comparisons between the LAFOV at different emulated scan times (by rebinning list mode data) and the SAFOV were made for target lesion integral activity, signal to noise (SNR), target lesion to background ratio (TBR) and visual image quality. RESULTS Equivalent target lesion integral activity to the SAFOV acquisitions (16-min duration for a 106 cm FOV) were obtained on the LAFOV in 1.63 ± 0.19 min (mean ± standard error). Equivalent SNR was obtained by 1.82 ± 1.00 min LAFOV acquisitions. No statistically significant differences (p > 0.05) in TBR were observed even for 0.5 min LAFOV examinations. Subjective image quality rated by two physicians confirmed the 10 min LAFOV to be of the highest quality, with equivalence between the LAFOV and the SAFOV at 1.8 ± 0.85 min. By analogy, if the LAFOV scans were maintained at 10 min, proportional reductions in applied radiopharmaceutical could obtain equivalent lesion integral activity for activities under 40 MBq and equivalent doses for the PET component of <1 mSv. CONCLUSION Improved image quality, lesion quantification and SNR resulting from higher sensitivity were demonstrated for an LAFOV system in a head-to-head comparison under clinical conditions. The LAFOV system could deliver images of comparable quality and lesion quantification in under 2 min, compared to routine SAFOV acquisition (16 min for equivalent FOV coverage). Alternatively, the LAFOV system could allow for low-dose examination protocols. Shorter LAFOV acquisitions (0.5 min), while of lower visual quality and SNR, were of adequate quality with respect to target lesion identification, suggesting that ultra-fast or low-dose acquisitions can be acceptable in selected settings.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Jan-Niklas Hünermund
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - George Prenosil
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Marco Viscione
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Bernd Vollnberg
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| |
Collapse
|
10
|
Feasibility of late acquisition [68Ga]Ga-PSMA-11 PET/CT using a long axial field-of-view PET/CT scanner for the diagnosis of recurrent prostate cancer-first clinical experiences. Eur J Nucl Med Mol Imaging 2021; 48:4456-4462. [PMID: 34155538 PMCID: PMC8566391 DOI: 10.1007/s00259-021-05438-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
Purpose While acquisition of images in [68 Ga]Ga-PSMA-11 following longer uptake times can improve lesion uptake and contrast, resultant imaging quality and count statistics are limited by the isotope’s half-life (68 min). Here, we present a series of cases demonstrating that when performed using a long axial field-of-view (LAFOV) PET/CT system, late imaging is feasible and can even provide improved image quality compared to regular acquisitions. Methods In this retrospective case series, we report our initial experiences with 10 patients who underwent standard imaging at 1 h p.i. following administration of 192 ± 36 MBq [68 Ga]Ga-PSMA-11 with additional late imaging performed at 4 h p.i. Images were acquired in a single bed position for 6 min at 1 h p.i. and 16 min p.i. at 4 h p.i. using a LAFOV scanner (106 cm axial FOV). Two experienced nuclear medicine physicians reviewed all scans in consensus and evaluated overall image quality (5-point Likert scale), lesion uptake in terms of standardised uptake values (SUV), tumour to background ratio (TBR) and target-lesion signal to background noise (SNR). Results Subjective image quality as rated on a 5-point Likert scale was only modestly lower for late acquisitions (4.2/5 at 4 h p.i.; 5/5 1 h p.i.), TBR was significantly improved (4 h: 3.41 vs 1 h: 1.93, p < 0.001) and SNR was improved with borderline significance (4 h: 33.02 vs 1 h: 24.80, p = 0.062) at later imaging. Images were obtained with total acquisition times comparable to routine examinations on standard axial FOV scanners. Conclusion Late acquisition in tandem with a LAFOV PET/CT resulted in improvements in TBR and SNR and was associated with only modest impairment in subjective visual imaging quality. These data show that later acquisition times for [68 Ga]Ga-PSMA-11 may be preferable when performed on LAFOV systems. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05438-5.
Collapse
|
11
|
Khorrami M, Bera K, Thawani R, Rajiah P, Gupta A, Fu P, Linden P, Pennell N, Jacono F, Gilkeson RC, Velcheti V, Madabhushi A. Distinguishing granulomas from adenocarcinomas by integrating stable and discriminating radiomic features on non-contrast computed tomography scans. Eur J Cancer 2021; 148:146-158. [PMID: 33743483 PMCID: PMC8087632 DOI: 10.1016/j.ejca.2021.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify stable and discriminating radiomic features on non-contrast CT scans to develop more generalisable radiomic classifiers for distinguishing granulomas from adenocarcinomas. METHODS In total, 412 patients with adenocarcinomas and granulomas from three institutions were retrospectively included. Segmentations of the lung nodules were performed manually by an expert radiologist in a 2D axial view. Radiomic features were extracted from intra- and perinodular regions. A total of 145 patients were used as part of the training set (Str), whereas 205 patients were used as part of test set I (Ste1) and 62 patients were used as part of independent test set II (Ste2). To mitigate the variation of CT acquisition parameters, we defined 'stable' radiomic features as those for which the feature expression remains relatively unchanged between different sites, as assessed using a Wilcoxon rank-sum test. These stable features were used to develop more generalisable radiomic classifiers that were more resilient to variations in lung CT scans. Features were ranked based on two criteria, firstly based on discriminability (i.e. maximising AUC) alone and subsequently based on maximising both feature stability and discriminability. Different machine-learning classifiers (Linear discriminant analysis, Quadratic discriminant analysis, Support vector machines and random forest) were trained with features selected using the two different criteria and then compared on the two independent test sets for distinguishing granulomas from adenocarcinomas, in terms of area under the receiver operating characteristic curve. RESULTS In the test sets, classifiers constructed using the criteria involving maximising feature stability and discriminability simultaneously achieved higher AUC compared with the discriminating alone criteria (Ste1 [n = 205]: maximum AUCs of 0.85versus . 0.80; p-value = 0.047 and Ste2 [n = 62]: maximum AUCs of 0.87 versus. 0.79; p-value = 0.021). These differences held for features extracted from scans with <3 mm slice thickness (AUC = 0.88 versus. 0.80; p-value = 0.039, n = 100) and for the ≥3 mm cases (AUC = 0.81 versus. 0.76; p-value = 0.034, n = 105). In both experiments, shape and peritumoural texture features had a higher stability compared with intratumoural texture features. CONCLUSIONS Our study suggests that explicitly accounting for both stability and discriminability results in more generalisable radiomic classifiers to distinguish adenocarcinomas from granulomas on non-contrast CT scans. Our results also showed that peritumoural texture and shape features were less affected by the scanner parameters compared with intratumoural texture features; however, they were also less discriminating compared with intratumoural features.
Collapse
Affiliation(s)
- Mohammadhadi Khorrami
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kaustav Bera
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rajat Thawani
- OHSU Knight Cancer Institute, Oregon Health & Science University, Oregon, USA
| | - Prabhakar Rajiah
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Amit Gupta
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, CWRU, Cleveland, OH, USA
| | - Philip Linden
- Thoracic and Esophageal Surgery Department, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nathan Pennell
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Frank Jacono
- Pulmonary Section, Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert C Gilkeson
- Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, USA.
| |
Collapse
|
12
|
Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, Shi K, Ashar-Oromieh A, Rominger A. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [ 18F]-FDG PET/CT. Ann Nucl Med 2021; 35:485-492. [PMID: 33550515 PMCID: PMC7981298 DOI: 10.1007/s12149-021-01588-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To establish the feasibility of shorter acquisition times (and by analogy, applied activity) on tumour detection and lesion contrast in digital PET/CT. METHODS Twenty-one randomly selected patients who underwent oncological [18F]-FDG PET/CT on a digital PET/CT were retrospectively evaluated. Scan data were anonymously obtained and reconstructed in list-mode acquisition for a standard 2 min/bed position (bp), 1 min/bp and 30 s/bp (100%, 50% and 25% time or applied activity, respectively). Scans were randomized and read by two nuclear medicine physicians in a consensus read. Readers were blind to clinical details. Scans were evaluated for the number of pathological lesions detected. Measured uptake for lesions was evaluated by maximum and mean standardized uptake value (SUVmax and SUVmean, respectively) and tumour-to-backround ratio (TBR) were compared. Agreement between the three acquisitions was compared by Krippendorf's alpha. RESULTS Overall n = 100 lesions were identified in the 2 min and 1 min/bp acquisitions and n = 98 lesions in the 30 s/bp acquisitions. Agreement between the three acquisitions with respect to lesion number and tumour-to-background ratio showed almost perfect agreement (K's α = 0.999). SUVmax, SUVmean and TBR likewise showed > 98% agreement, with longer acquisitions being associated with slightly higher mean TBR (2 min/bp 7.94 ± 4.41 versus 30 s/bp 7.84 ± 4.22, p < 0.05). CONCLUSION Shorter acquisition times have traditionally been associated with reduced lesion detectability or the requirement for larger amounts of radiotracer activity. These data confirm that this is not the case for new-generation digital PET scanners, where the known higher sensitivity results in clinically adequate images for shorter acquisitions. Only a small variation in the semi-quantitative parameters SUVmax, SUVmean and TBR was seen, confirming that either reduction of acquisition time or (by analogy) applied activity can be reduced as much as 75% in digital PET/CT without apparent clinical detriment.
Collapse
Affiliation(s)
- Ian Alberts
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland.
| | - Christos Sachpekidis
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - George Prenosil
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Marco Viscione
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Karl Peter Bohn
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Ali Ashar-Oromieh
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine. Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, 3010, Bern, Switzerland
| |
Collapse
|