1
|
Fang X, Wang X, Hao M, Zhong G, Gao M, Ma Y, Pan Y, Yang H, Yin X, Shen J, Huang S, Wang Q. The role of copper homeostasis and cuproptosis in cerebrovascular diseases:A novel therapeutic target. Eur J Pharmacol 2025; 1001:177649. [PMID: 40320113 DOI: 10.1016/j.ejphar.2025.177649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 06/02/2025]
Abstract
Copper has a broad and important role in biological systems, where it acts as a cofactor at the active sites of a variety of enzymes and is involved in a wide range of physiological activities such as oxidative stress, lipid metabolism, and energy metabolism. Like other trace elements, copper levels maintain a balanced homeostasis in the body, and imbalances in copper homeostasis and cuproptosis it induces are involved in the progression of a range of diseases, such as cerebrovascular diseases (CVDs), including atherosclerosis (AS), hypertension, and stroke. Therefore, a deeper understanding of the relationship between copper and cerebrovascular pathologies may unearth more effective therapeutic strategies that can be effectively applied in the clinic. In this paper, we will briefly describe the process of copper metabolism and cuproptosis, and analyze how copper acts in CVDs from multiple perspectives, to further deepen the understanding of copper metabolism and provide new ideas for the treatment of CVDs.
Collapse
Affiliation(s)
- Xiaoling Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xinyue Wang
- Department of Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Mengmeng Hao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yujie Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yaru Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongying Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xuanying Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jiangang Shen
- School of Chinese Medicine, University of Hong Kong, Hong Kong, China.
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
2
|
Gadde R, Shah S, Böhlke M, Kim J, Betharia S. N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) as a novel chelator for Wilson's disease. Free Radic Biol Med 2025; 232:421-436. [PMID: 40032031 DOI: 10.1016/j.freeradbiomed.2025.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Wilson's Disease (WD) is a rare autosomal recessive disorder caused by mutations in the ATP7B gene. These mutations lead to defective copper (Cu) transport and to accumulation of Cu in tissues, primarily in the liver and brain. Current treatment options such as D-penicillamine, trientine, and zinc salts focus on increasing Cu excretion or reducing Cu absorption, but often cause debilitating side effects. N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) is a lipophilic thiol-based compound originally developed for environmental decontamination. It has been shown to chelate toxic metals such as mercury, lead, and cadmium. This study was designed to evaluate the efficacy of NBMI to mitigate Cu overload using both in vitro and in vivo models of WD. HepG2 cells with the ATP7B gene knocked down had increased sensitivity to copper sulfate (CuSO4) compared to wild-type (WT) cells, validating the cell model for WD. Pretreatment with NBMI (2.5-50 μM) improved cell viability, reduced Cu-induced oxidative stress, decreased metallothionein levels, mitigated resulting DNA damage, and reduced overall levels of free intracellular Cu. In an established toxic milk mouse (tx-J) model of WD, 1% dietary NBMI effectively lowered hepatic, cerebral, and renal Cu levels. Treatment with 1% NBMI also improved liver function, as evidenced by reduced ALT levels and normalized hepatocyte morphology. Tx-J mice displayed higher liver-to-body weight ratios compared to WT mice, and treatment with 1% NBMI effectively reduced this ratio. While NBMI did not impact the elevated white blood cell counts and low platelet levels characteristic of tx-J mice, it also did not cause any detrimental effects on red blood cell, hemoglobin, and hematocrit levels. This dose of NBMI also restored homeostasis of other dysregulated essential metal ions in tx-J mice. These findings suggest that dietary administration of NBMI effectively chelates excess free Cu, ameliorates WD symptoms and offers a promising alternative to existing chelators.
Collapse
Affiliation(s)
- Rajitha Gadde
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, Boston, MA, USA
| | - Shrey Shah
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, Boston, MA, USA
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, Boston, MA, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, MA, USA
| | - Swati Betharia
- Department of Pharmaceutical Sciences, MCPHS University, School of Pharmacy, Boston, MA, USA.
| |
Collapse
|
3
|
Zhang W, Song Z, Tian Y, Zhang R, Guo Z, Yang Y, Jiang X, Zhang R. Copper homeostasis and Cuprotosis: Exploring novel therapeutic strategies for connective tissue diseases. Int Immunopharmacol 2025; 145:113698. [PMID: 39642560 DOI: 10.1016/j.intimp.2024.113698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
Copper is an indispensable element for human health, with its balance being critical to prevent the onset of diseases, particularly those affecting connective tissues. Imbalances in copper levels can lead to pathological alterations. Research indicates that copper supplements and chelators hold promise for the treatment of certain conditions, yet the precise mechanisms by which copper imbalances and the cell death mechanism known as cuprotosis contribute to connective tissue diseases remain elusive. This paper delves into the potential role of copper imbalance and cuprotosis in connective tissue diseases and evaluates the underlying cellular mechanisms. The goal is to offer practical insights into targeted therapies for dysregulated copper metabolism, with the aim of devising novel strategies for the treatment of connective tissue diseases.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Song
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Yuanyuan Tian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhigang Guo
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Yanmei Yang
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ruoyi Zhang
- Department of Rheumatology and Immunology, Chifeng Cancer Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
4
|
Han X, Gao Y, Chen X, Bian C, Chen W, Yan F. Mitochondria UPR stimulation by pelargonidin-3-glucoside contributes to ameliorating lipid accumulation under copper exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173603. [PMID: 38821275 DOI: 10.1016/j.scitotenv.2024.173603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Intensification of copper pollution in the environment has led to its excessive accumulation in humans, causing oxidative stress and lipid metabolism disorders. It is necessary to look for effective targets and safe methods to alleviate copper toxicity. Pelargonidin-3-glucoside (Pg3G) is a natural anthocyanin with metal ion chelating ability and multiple physiological activities. In this study, lipid accumulation was investigated under copper exposure in Caenorhabditis elegans which can be improved by Pg3G. Transcriptome analysis revealed that differentially expressed genes are enriched in lipid metabolism and protein folding/degradation. Pg3G activated mitochondrial unfold protein response (UPRmt) to mitigate mitochondrial damage caused by copper and regulated the expression of genes involved in lipid absorption, transport, and synthesis, thereby reducing lipid levels in C. elegans. This improvement disappeared in the ubl-5 knockout strain, indicating that ubl-5 is one target of Pg3G. Meanwhile, in HepG2 cells, Pg3G enhanced the cellular antioxidant capacity by activating UPRmt for maintaining mitochondrial homeostasis, followed by inhibition of excessive lipid accumulation. Overall, these results suggested that UPRmt activation can be a strategy for mitigating lipid disorders induced by copper and Pg3G with excellent ability to resist oxidative stress specially targeted for ubl-5 has a promising application in controlling copper contamination.
Collapse
Affiliation(s)
- Xiao Han
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yufang Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Bian
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Fontes A, Pierson H, Bierła JB, Eberhagen C, Kinschel J, Akdogan B, Rieder T, Sailer J, Reinold Q, Cielecka-Kuszyk J, Szymańska S, Neff F, Steiger K, Seelbach O, Zibert A, Schmidt HH, Hauck SM, von Toerne C, Michalke B, Semrau JD, DiSpirito AM, Ramalho-Santos J, Kroemer G, Polishchuk R, Azul AM, DiSpirito A, Socha P, Lutsenko S, Zischka H. Copper impairs the intestinal barrier integrity in Wilson disease. Metabolism 2024; 158:155973. [PMID: 38986805 DOI: 10.1016/j.metabol.2024.155973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
In Wilson disease (WD), liver copper (Cu) excess, caused by mutations in the ATPase Cu transporting beta (ATP7B), has been extensively studied. In contrast, in the gastrointestinal tract, responsible for dietary Cu uptake, ATP7B malfunction is poorly explored. We therefore investigated gut biopsies from WD patients and compared intestines from two rodent WD models and from human ATP7B knock-out intestinal cells to their respective wild-type controls. We observed gastrointestinal (GI) inflammation in patients, rats and mice lacking ATP7B. Mitochondrial alterations and increased intestinal leakage were observed in WD rats, Atp7b-/- mice and human ATP7B KO Caco-2 cells. Proteome analyses of intestinal WD homogenates revealed profound alterations of energy and lipid metabolism. The intestinal damage in WD animals and human ATP7B KO cells did not correlate with absolute Cu elevations, but likely reflects intracellular Cu mislocalization. Importantly, Cu depletion by the high-affinity Cu chelator methanobactin (MB) restored enterocyte mitochondria, epithelial integrity, and resolved gut inflammation in WD rats and human WD enterocytes, plausibly via autophagy-related mechanisms. Thus, we report here before largely unrecognized intestinal damage in WD, occurring early on and comprising metabolic and structural tissue damage, mitochondrial dysfunction, and compromised intestinal barrier integrity and inflammation, that can be resolved by high-affinity Cu chelation treatment.
Collapse
Affiliation(s)
- Adriana Fontes
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; DCV-Department of Life Sciences, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Joanna B Bierła
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jennifer Kinschel
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Banu Akdogan
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Judith Sailer
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Quirin Reinold
- Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany
| | - Joanna Cielecka-Kuszyk
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Sylwia Szymańska
- Department of Pathomorphology, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Katja Steiger
- Comparative Experimental Pathology Department, Institute for General Pathology and Pathological Anatomy, Technical University of Munich (TUM), Germany
| | - Olga Seelbach
- Comparative Experimental Pathology Department, Institute for General Pathology and Pathological Anatomy, Technical University of Munich (TUM), Germany
| | - Andree Zibert
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H Schmidt
- Medizinische Klinik B für Gastroenterologie und Hepatologie, Universitätsklinikum Münster, Münster, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, USA
| | - Ana M DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; DCV-Department of Life Sciences, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France
| | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | - Anabela Marisa Azul
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Alan DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, USA
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Technical University Munich, Institute of Toxicology and Environmental Hygiene, Munich, Germany.
| |
Collapse
|
6
|
Nishito Y, Kamimura Y, Nagamatsu S, Yamamoto N, Yasui H, Kambe T. Zinc and manganese homeostasis closely interact in mammalian cells. FASEB J 2024; 38:e23605. [PMID: 38597508 DOI: 10.1096/fj.202400181r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.
Collapse
Affiliation(s)
- Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Kamimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shino Nagamatsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nao Yamamoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Washington-Hughes CL, Roy S, Seneviratne HK, Karuppagounder SS, Morel Y, Jones JW, Zak A, Xiao T, Boronina TN, Cole RN, Bumpus NN, Chang CJ, Dawson TM, Lutsenko S. Atp7b-dependent choroid plexus dysfunction causes transient copper deficit and metabolic changes in the developing mouse brain. PLoS Genet 2023; 19:e1010558. [PMID: 36626371 PMCID: PMC9870141 DOI: 10.1371/journal.pgen.1010558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/23/2023] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Copper (Cu) has a multifaceted role in brain development, function, and metabolism. Two homologous Cu transporters, Atp7a (Menkes disease protein) and Atp7b (Wilson disease protein), maintain Cu homeostasis in the tissue. Atp7a mediates Cu entry into the brain and activates Cu-dependent enzymes, whereas the role of Atp7b is less clear. We show that during postnatal development Atp7b is necessary for normal morphology and function of choroid plexus (ChPl). Inactivation of Atp7b causes reorganization of ChPl' cytoskeleton and cell-cell contacts, loss of Slc31a1 from the apical membrane, and a decrease in the length and number of microvilli and cilia. In ChPl lacking Atp7b, Atp7a is upregulated but remains intracellular, which limits Cu transport into the brain and results in significant Cu deficit, which is reversed only in older animals. Cu deficiency is associated with down-regulation of Atp7a in locus coeruleus and catecholamine imbalance, despite normal expression of dopamine-β-hydroxylase. In addition, there are notable changes in the brain lipidome, which can be attributed to inhibition of diacylglyceride-to-phosphatidylethanolamine conversion. These results identify the new role for Atp7b in developing brain and identify metabolic changes that could be exacerbated by Cu chelation therapy.
Collapse
Affiliation(s)
| | - Shubhrajit Roy
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Senthilkumar S. Karuppagounder
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yulemni Morel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Alex Zak
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tong Xiao
- Department of Chemistry, University of California Berkeley, California, United States of America
| | - Tatiana N. Boronina
- Department of Biological Chemistry Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert N. Cole
- Department of Biological Chemistry Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Namandjé N. Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J. Chang
- Department of Chemistry, University of California Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, California
- Helen Wills Neuroscience Institute, University of California Berkeley, California
| | - Ted M. Dawson
- Neurodegeneration and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; United States of America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
A Cuproptosis Activation Scoring model predicts neoplasm-immunity interactions and personalized treatments in glioma. Comput Biol Med 2022; 148:105924. [PMID: 35964468 DOI: 10.1016/j.compbiomed.2022.105924] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/21/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are malignant tumors in the central nervous system. Cuproptosis is a newly discovered cell death mechanism targeting lipoylated tricarboxylic acid cycle proteins. Previous studies have found that cuproptosis participates in tumor progression, but its role in gliomas is still elusive. Here, we systematically explored the bulk-tumor and single-cell transcriptome data to reveal its role in gliomas. The cuproptosis activity score (CuAS) was constructed based on cuproptosis-related genes, and machine learning techniques validated the score stability. High CuAS gliomas were more likely to have a poor prognosis and an aggressive mesenchymal (MES) subtype. Subsequently, the SCENIC algorithm predicted 20 CuAS-related transcription factors (TFs) in gliomas. Function enrichment and microenvironment analyses found that CuAS was associated with tumor immune infiltration. Accordingly, intercellular communications between neoplasm and immunity were explored by the R package "Cellchat". Five signaling pathways and 8 ligand-receptor pairs including ICAM1, ITGAX, ITGB2, ANXA1-FRR1, and the like, were identified to suggest how cuproptosis activity connected neoplastic and immune cells. Critically, 13 potential drugs targeting high CuAs gliomas were predicted according to the CTRP and PRISM databases, including oligomycin A, dihydroartemisinin, and others. Taken together, cuproptosis is involved in glioma aggressiveness, neoplasm-immune interactions, and may be used to assist in drug selection.
Collapse
|
9
|
Ghanem M, Lewis GF, Xiao C. Recent advances in cytoplasmic lipid droplet metabolism in intestinal enterocyte. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159197. [PMID: 35820577 DOI: 10.1016/j.bbalip.2022.159197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Processing of dietary fats in the intestine is a highly regulated process that influences whole-body energy homeostasis and multiple physiological functions. Dysregulated lipid handling in the intestine leads to dyslipidemia and atherosclerotic cardiovascular disease. In intestinal enterocytes, lipids are incorporated into lipoproteins and cytoplasmic lipid droplets (CLDs). Lipoprotein synthesis and CLD metabolism are inter-connected pathways with multiple points of regulation. This review aims to highlight recent advances in the regulatory mechanisms of lipid processing in the enterocyte, with particular focus on CLDs. In-depth understanding of the regulation of lipid metabolism in the enterocyte may help identify therapeutic targets for the treatment and prevention of metabolic disorders.
Collapse
Affiliation(s)
- Murooj Ghanem
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Gary F Lewis
- Departments of Medicine and Physiology, University of Toronto, and University Health Network, Toronto, ON, Canada
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
10
|
Copper and lipid metabolism: A reciprocal relationship. Biochim Biophys Acta Gen Subj 2021; 1865:129979. [PMID: 34364973 DOI: 10.1016/j.bbagen.2021.129979] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Copper and lipid metabolism are intimately linked, sharing a complex, inverse relationship in the periphery (outside of the central nervous system), which remains to be fully elucidated. SCOPE Copper and lipids have independently been implicated in the pathogenesis of diseases involving dyslipidaemia, including obesity, cardiovascular disease and non-alcoholic fatty liver disease and also in Wilson disease, an inherited disorder of copper overload. Here we review the relationship between copper and lipid regulatory pathways, which are potential druggable targets for therapeutic intervention. MAJOR CONCLUSIONS While the inverse relationship between copper and lipids is apparent, tissue-specific roles for the copper regulatory protein, ATP7B provide further insight into the association between copper and lipid metabolism. GENERAL SIGNIFICANCE Understanding the relationship between copper and lipid metabolism is important for identifying druggable targets for diseases with disrupted copper and/or lipid metabolism; and may reveal similar connections within the brain and in neurological diseases with impaired copper and lipid transport.
Collapse
|
11
|
Yuan GH, Zhang Z, Gao XS, Zhu J, Guo WH, Wang L, Ding P, Jiang P, Li L. Gut microbiota-mediated tributyltin-induced metabolic disorder in rats. RSC Adv 2020; 10:43619-43628. [PMID: 35519721 PMCID: PMC9058259 DOI: 10.1039/d0ra07502g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Tributyltin (TBT), an environmental pollutant widely used in antifouling coatings, can cause multiple-organ toxicity and gut microbiome dysbiosis in organisms, and can even cause changes in the host metabolomic profiles. However, little is known about the underlying effects and links of TBT-induced metabolic changes and gut microbiome dysbiosis. In this study, rats were exposed to TBT at a dose of 100 μg kg-1 body weight (BW) for 38 days, followed by multi-omics analysis, including microbiome, metabolomics, and metallomics. Results showed that TBT exposure reduced rat weight gain and decreased the serum triglyceride (TG) level. Metabolic analysis revealed that TBT fluctuated linoleic acid metabolism and glycerophospholipid metabolism in the liver; the tricarboxylic acid cycle (TCA cycle), nicotinate and nicotinamide metabolism, and arachidonic acid metabolism in serum; glycine, serine, and threonine metabolism, the one carbon pool by folate, nicotinate, and nicotinamide metabolism; and tryptophan metabolism in feces. Furthermore, TBT treatment dictated liver inflammation due to enhancing COX-2 expression by activating protein kinase R-like ER kinase (PERK) and C/EBP homologous protein (CHOP) to induce endoplasmic reticulum (ER) stress instead of stimulating arachidonic acid metabolism. Meanwhile, alteration of the intestinal flora [Acetivibrio]_ethanolgignens_group, Acetatifactor, Eisenbergiella, Lachnospiraceae_UCG-010, Enterococcus, Anaerovorax, and Bilophila under TBT exposure were found to be involved in further mediating liver inflammation, causing lipid metabolism abnormalities, such as TG, linoleic acid, and glycerophospholipids, and interfering with the energy supply process. Among these, [Acetivibrio]_ethanolgignens_group, Enterococcus, and Bilophila could be considered as potential biomarkers for TBT exposure based on receiver operator characteristic (ROC) curve analysis.
Collapse
Affiliation(s)
- Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Xing-Su Gao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Wen-Hui Guo
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Li Wang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University Changsha 410078 P. R. China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| |
Collapse
|
12
|
Pöhler M, Guttmann S, Nadzemova O, Lenders M, Brand E, Zibert A, Schmidt HH, Sandfort V. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B. PLoS One 2020; 15:e0239411. [PMID: 32997714 PMCID: PMC7526882 DOI: 10.1371/journal.pone.0239411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/05/2020] [Indexed: 01/14/2023] Open
Abstract
Wilson's disease (WD) is a monogenetic liver disease that is based on a mutation of the ATP7B gene and leads to a functional deterioration in copper (Cu) excretion in the liver. The excess Cu accumulates in various organs such as the liver and brain. WD patients show clinical heterogeneity, which can range from acute or chronic liver failure to neurological symptoms. The course of the disease can be improved by a life-long treatment with zinc or chelators such as D-penicillamine in a majority of patients, but serious side effects have been observed in a significant portion of patients, e.g. neurological deterioration and nephrotoxicity, so that a liver transplant would be inevitable. An alternative therapy option would be the genetic correction of the ATP7B gene. The novel gene therapy method CRISPR/Cas9, which has recently been used in the clinic, may represent a suitable therapeutic opportunity. In this study, we first initiated an artificial ATP7B point mutation in a human cell line using CRISPR/Cas9 gene editing, and corrected this mutation by the additional use of single-stranded oligo DNA nucleotides (ssODNs), simulating a gene correction of a WD point mutation in vitro. By the addition of 0.5 mM of Cu three days after lipofection, a high yield of CRISPR/Cas9-mediated ATP7B repaired cell clones was achieved (60%). Moreover, the repair efficiency was enhanced using ssODNs that incorporated three blocking mutations. The repaired cell clones showed a high resistance to Cu after exposure to increasing Cu concentrations. Our findings indicate that CRISPR/Cas9-mediated correction of ATP7B point mutations is feasible and may have the potential to be transferred to the clinic.
Collapse
Affiliation(s)
- Michael Pöhler
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Sarah Guttmann
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Oksana Nadzemova
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Malte Lenders
- Medizinische Klinik D, Allgemeine Innere Medizin und Notaufnahme sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Universitätsklinikum Münster, Münster, Germany
| | - Eva Brand
- Medizinische Klinik D, Allgemeine Innere Medizin und Notaufnahme sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Universitätsklinikum Münster, Münster, Germany
| | - Andree Zibert
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Hartmut H. Schmidt
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
| | - Vanessa Sandfort
- Medizinische Klinik B, Gastroenterologie, Hepatologie, Endokrinologie, Klinische Infektiologie, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|