1
|
Ferraro KM, Welker L, Ward EB, Schmitz OJ, Bradford MA. Plant mycorrhizal associations mediate the zoogeochemical effects of calving subsidies by a forest ungulate. J Anim Ecol 2023; 92:2280-2296. [PMID: 37667666 DOI: 10.1111/1365-2656.14002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/20/2023] [Indexed: 09/06/2023]
Abstract
Animals interact with and impact ecosystem biogeochemical cycling-processes known as zoogeochemistry. While the deposition of various animal materials (e.g. carcasses and faeces) has been shown to create nutrient hotspots and alter nutrient cycling and storage, the inputs from parturition (i.e. calving) have yet to be explored. We examine the effects of ungulate parturition, which often occurs synchronously during spring green-up and therefore aligns with increased plant nitrogen demand in temperate biomes. Impacts of zoogeochemical inputs are likely context-dependent, where differences in material quality, quantity and the system of deposition modulate their impacts. Plant mycorrhizal associations, especially, create different nutrient-availability contexts, which can modify the effects of nutrient inputs. We, therefore, hypothesize that mycorrhizal associations modulate the consequences of parturition on soil nutrient dynamics and nitrogen pools. We established experimental plots that explore the potential of two kinds of zoogeochemical inputs deposited at ungulate parturition (placenta and natal fluid) in forest microsites dominated by either ericoid mycorrhizal (ErM) or ectomycorrhizal (EcM) plants. We assess how these inputs affect rates of nutrient cycling and nitrogen content in various ecosystem pools, using isotope tracers to track the fate of nitrogen inputs into plant and soil pools. Parturition treatments accelerate nutrient cycling processes and increase nitrogen contents in the plant leaf, stem and fine root pools. The ecosystem context strongly modulates these effects. Microsites dominated by ErM plants mute parturition treatment impacts on most nutrient cycling processes and plant pools. Both plant-fungal associations are, however, equally efficient at retaining nitrogen, although retention of nitrogen in the parturition treatment plots was more than two times lower than in control plots. Our results highlight the potential importance of previously unexamined nitrogen inputs from animal inputs, such as those from parturition, in contributing to fine-scale heterogeneity in nutrient cycling and availability. Animal inputs should therefore be considered, along with their interactions with plant mycorrhizal associations, in terms of how zoogeochemical dynamics collectively affect nutrient heterogeneity in ecosystems.
Collapse
Affiliation(s)
- Kristy M Ferraro
- Yale University School of the Environment, New Haven, Connecticut, USA
| | - Les Welker
- Yale University School of the Environment, New Haven, Connecticut, USA
| | - Elisabeth B Ward
- The New York Botanical Garden, The Bronx, New York, USA
- The Forest School, Yale University School of the Environment, New Haven, Connecticut, USA
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Oswald J Schmitz
- Yale University School of the Environment, New Haven, Connecticut, USA
| | - Mark A Bradford
- Yale University School of the Environment, New Haven, Connecticut, USA
- The Forest School, Yale University School of the Environment, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Kleppel GS, Frank DA. Structure and functioning of wild and agricultural grazing ecosystems: A comparative review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.945514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
For more than 10 million years, large, herd forming ruminants have thrived as parts of sustainable grazing ecosystems. Conversely, since their domestication 8,000–11,000 years ago, cattle, sheep, and goats have often exhibited dysfunctional relationships with the ecosystems they inhabit. A considerable literature, developed over decades, documents the negative impacts of animal agriculture and associated activities (e.g., feed production) on grassland ecosystems. Coincident with the accumulating data documenting the impacts of “conventional” animal agriculture, has been a growing interest in restoring functionality to agricultural grazing ecosystems. These “regenerative” protocols often seek to mimic the structure and functions of wild grazing ecosystems. The objectives of this paper were two-fold: First to review the literature describing the structure and some key functional attributes of wild and agricultural grazing ecosystems; and second, to examine these attributes in conventionally and regeneratively managed grazing ecosystems and, assuming the wild condition to be the standard for sustainable grazer-environment relationships, to ascertain whether similar relationships exist in conventionally or regeneratively managed agricultural grazing ecosystems. Not unexpectedly our review revealed the complexity of both wild and agricultural grazing ecosystems and the interconnectedness of biological, chemical, and physical factors and processes within these systems. Grazers may increase or decrease system functionality, depending upon environmental conditions (e.g., moisture levels). Our review revealed that biodiversity, nitrogen cycling, and carbon storage in regenerative grazing systems more closely resemble wild grazing ecosystems than do conventional grazing systems. We also found multiple points of disagreement in the literature, particularly with respect to aboveground primary production (ANPP). Finally, we acknowledge that, while much has been accomplished in understanding grazing ecosystems, much remains to be done. In particular, some of the variability in the results of studies, especially of meta-analyses, might be reduced if datasets included greater detail on grazing protocols, and a common definition of the term, “grazing intensity.”
Collapse
|
3
|
Roy A, Gough L, Boelman NT, Rowe RJ, Griffin KL, McLaren JR. Small but mighty: impacts of rodent‐herbivore structures on carbon and nutrient cycling in arctic tundra. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Austin Roy
- Department of Biology, University of Texas at El Paso 500 West University Avenue El Paso, TX 79968
| | - Laura Gough
- Department of Biological Sciences Towson University Towson MD USA
| | | | - Rebecca J. Rowe
- Department of Natural Resources and the Environment University of New Hampshire Durham NH USA
| | - Kevin L. Griffin
- Lamont Doherty Earth Observatory Columbia University New York NY USA
- Department of Ecology, Evolution and Environmental Biology Columbia University New York NY USA
- Department of Earth and Environmental Sciences Columbia University New York NY USA
| | - Jennie R. McLaren
- Department of Biology, University of Texas at El Paso 500 West University Avenue El Paso, TX 79968
| |
Collapse
|
4
|
Mramba RP. Grouping behaviour and activity patterns of impala (Aepyceros melampus) in a nutrient –rich and a nutrient-poor savanna in Tanzania. Heliyon 2022; 8:e09386. [PMID: 35586331 PMCID: PMC9108877 DOI: 10.1016/j.heliyon.2022.e09386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
African savannas are broadly categorised into nutrient-rich and nutrient-poor according to soil nutrient availability and precipitation. Soil nutrients limit plant growth in the nutrient-rich savannas, leading to little plant biomass of high nutrient concentrations. In the nutrient-poor savannas soil nutrients are depleted before plant growth ceases, resulting in large production of nutrient-poor plant biomass. Impala (Aepyceros melampus), are medium-sized antelopes occurring in both savannas, but they face feeding challenges in the nutrient-poor savannas because of high energy requirements. Activity patterns of impala are well studied, but few studies compared savannas with differing soil nutrients and animal communities. I used the scanning methods to study impala activities in a nutrient-rich savanna, the Serengeti National Park, and a nutrient-poor savanna, the Mikumi National Park in Tanzania, during the wet and dry seasons. Impala are gregarious and mixed feeders, utilising grasses during the wet season, switching to browsing during the dry season, making them good candidates for comparing savannas and seasons. The impala formed bigger groups in Mikumi during the wet season splitting during the dry season. Grazing time was higher in the wet season than in the dry season in Serengeti, but did not differ between the seasons in Mikumi. Browsing time was longer in Mikumi than Serengeti during the dry season, and longer in Serengeti than Mikumi during the wet season. Resting time was longer in Serengeti than Mikumi during the wet season, while walking time was longer in Mikumi than Serengeti during the dry season. Family groups spent longer time resting than bachelor groups in both sites. The study shows obvious differences in grouping and activity patterns of impala between the sites and the seasons. Further studies are recommended to explore the influence of savanna and season on grouping behaviour and activity patterns of herbivores.
Collapse
|
5
|
Huruba R, Nemera S, Ngute F, Sahomba M, Mundy PJ, Sebata A, MacFadyen DN. Short duration overnight cattle kraaling in natural rangelands: Does time after kraal use affect their utilization by wildlife and above ground grass parameters? PLoS One 2022; 17:e0248795. [PMID: 35482714 PMCID: PMC9049567 DOI: 10.1371/journal.pone.0248795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/25/2022] [Indexed: 11/18/2022] Open
Abstract
In east and southern Africa some private ranch owners are corralling (hereafter kraaling) cattle overnight for short periods (for example, seven days) in natural rangelands to create nutrient enriched hotspots which are attractive to large herbivores. However, the effect of season and time after kraal use (alt. age of nutrient enriched hotspots) on large herbivore use of these sites has not been examined. We collated the number of large herbivore sightings per day from camera traps during wet, early and late dry season in nutrient enriched hotspots of varying ages (1, 2, 3 and 4 years) and surrounding vegetation. In addition, above ground grass biomass and height in nutrient enriched hotspots was compared to that of the surrounding vegetation. Furthermore, we tested if repeated grazing in nutrient enriched hotspots stimulated grass compensatory growth. Large herbivore use of nutrient enriched hotspots was similar during wet, early and late dry season. Time after kraal use had a significant effect on mixed feeders (impala and African savanna elephant) utilization of nutrient enriched hotspots but not grazers (zebra and warthog) and browsers (giraffe and greater kudu). Both impala and African savanna elephants mostly used nutrient enriched hotspots one year after kraal use. Aboveground grass biomass and height were higher in surrounding vegetation than in nutrient enriched hotspots. Repeated clipping (proxy for grazing) resulted in compensatory aboveground grass biomass in nutrient enriched hotspots, which declined with time after kraal use. We concluded that nutrient enriched hotspots created through short duration overnight kraaling were important foraging sites for large herbivores.
Collapse
Affiliation(s)
- Rangarirai Huruba
- Department of Forest Resources & Wildlife Management, National University of Science & Technology, Ascot, Bulawayo, Zimbabwe
- Debshan Ranch, Shangani, Zimbabwe
- E Oppenheimer & Son (Pty) Limited, Parktown, South Africa
| | - Servious Nemera
- Department of Forest Resources & Wildlife Management, National University of Science & Technology, Ascot, Bulawayo, Zimbabwe
| | - Faith Ngute
- Department of Forest Resources & Wildlife Management, National University of Science & Technology, Ascot, Bulawayo, Zimbabwe
- Debshan Ranch, Shangani, Zimbabwe
| | | | - Peter J. Mundy
- Department of Forest Resources & Wildlife Management, National University of Science & Technology, Ascot, Bulawayo, Zimbabwe
| | - Allan Sebata
- Department of Forest Resources & Wildlife Management, National University of Science & Technology, Ascot, Bulawayo, Zimbabwe
| | | |
Collapse
|
6
|
D’Ammando G, Caro T, Oelze VM, Phillips S, Sime P, Stewart FA, Piel AK. Ecological Drivers of Habitat Use by Meso Mammals in a Miombo Ecosystem in the Issa Valley, Tanzania. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.773568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vast stretches of East and Southern Africa are characterized by a mosaic of deciduous woodlands and evergreen riparian forests, commonly referred to as “miombo,” hosting a high diversity of plant and animal life. However, very little is known about the communities of small-sized mammals inhabiting this heterogeneous biome. We here document the diversity and abundance of 0.5–15 kg sized mammals (“meso-mammals”) in a relatively undisturbed miombo mosaic in western Tanzania, using 42 camera traps deployed over a 3 year-period. Despite a relatively low diversity of meso-mammal species (n = 19), these comprised a mixture of savanna and forest species, with the latter by far the most abundant. Our results show that densely forested sites are more intensely utilized than deciduous woodlands, suggesting riparian forest within the miombo matrix might be of key importance to meso-mammal populations. Some species were captured significantly more often in proximity to (and sometimes feeding on) termite mounds (genus Macrotermes), as they are a crucial food resource. There was some evidence of temporal partitioning in activity patterns, suggesting hetero-specific avoidance to reduce foraging competition. We compare our findings to those of other miombo sites in south-central Africa.
Collapse
|
7
|
Ozment KA, Welti EAR, Shaffer M, Kaspari M. Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers. Ecol Evol 2021; 11:5413-5423. [PMID: 34026017 PMCID: PMC8131794 DOI: 10.1002/ece3.7435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We contrast the response of arthropod abundance and composition to bison grazing lawns during a drought and non-drought year, with an emphasis on acridid grasshoppers, an important grassland herbivore.Grazing lawns are grassland areas where regular grazing by mammalian herbivores creates patches of short-statured, high nutrient vegetation. Grazing lawns are predictable microsites that modify microclimate, plant structure, community composition, and nutrient availability, with likely repercussions for arthropod communities.One year of our study occurred during an extreme drought. Drought mimics some of the effects of mammalian grazers: decreasing above-ground plant biomass while increasing plant foliar percentage nitrogen.We sampled arthropods and nutrient availability on and nearby ("off") 10 bison-grazed grazing lawns in a tallgrass prairie in NE Kansas. Total grasshopper abundance was higher on grazing lawns and the magnitude of this difference increased in the wetter year of 2019 compared to 2018, when drought led to high grass foliar nitrogen concentrations on and off grazing lawns. Mixed-feeding grasshopper abundances were consistently higher on grazing lawns while grass-feeder and forb-feeder abundances were higher on lawns only in 2019, the wetter year. In contrast, the abundance of other arthropods (e.g., Hemiptera, Hymenoptera, and Araneae) did not differ on and off lawns, but increased overall in 2019, relative to the drought of 2018.Understanding these local scale patterns of abundances and community composition improves predictability of arthropod responses to ongoing habitat change.
Collapse
Affiliation(s)
- Katerina A. Ozment
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
| | - Ellen A. R. Welti
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
- Senckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | | | - Michael Kaspari
- Geographical Ecology GroupDepartment of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
8
|
Gabriel Mayengo, Armbruster W, Treydte AC. Quantifying nutrient re-distribution from nutrient hotspots using camera traps, indirect observation and stable isotopes in a miombo ecosystem, Tanzania. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|