1
|
Dinakaran D, Moore-Palhares D, Yang F, Hill JB. Precision radiotherapy with molecular-profiling of CNS tumours. J Neurooncol 2025; 172:51-75. [PMID: 39699761 DOI: 10.1007/s11060-024-04911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Diagnoses of CNS malignancies in the primary and metastatic setting have significantly advanced in the last decade with the advent of molecular pathology. Using a combination of immunohistochemistry, next-generation sequencing, and methylation profiling integrated with traditional histopathology, patient prognosis and disease characteristics can be understood to a much greater extent. This has recently manifested in predicting response to targeted drug therapies that are redefining management practices of CNS tumours. Radiotherapy, along with surgery, still remains an integral part of treating the majority of CNS tumours. However, the rapid advances in CNS molecular diagnostics have not yet been effectively translated into improving CNS radiotherapy. We explore several promising strategies under development to integrate molecular oncology into radiotherapy, and explore future directions that can serve to use molecular diagnostics to personalize radiotherapy. Evolving the management of CNS tumours with molecular profiling will be integral to supporting the future of precision radiotherapy.
Collapse
Affiliation(s)
- Deepak Dinakaran
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada.
- Department of Medical Biophysics and Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Suite 504, Toronto, ON, M5T 1P5, Canada.
| | - Daniel Moore-Palhares
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5, Canada
| | - Fan Yang
- Radiation Oncology, Mayo Clinic Arizona, 5881 E. Mayo Blvd, Phoenix, AZ, 85054, USA
| | - Jordan B Hill
- Banner MD Anderson Cancer Center, 925 E. McDowell Rd, Phoenix, AZ, 85006, USA
| |
Collapse
|
2
|
Holzgreve A, Nitschmann A, Maier SH, Büttner M, Schönecker S, Marschner SN, Fleischmann DF, Corradini S, Belka C, la Fougère C, Bodensohn R, Albert NL, Niyazi M. FET PET-based target volume delineation for the radiotherapy of glioblastoma: A pictorial guide to help overcome methodological pitfalls. Radiother Oncol 2024; 198:110386. [PMID: 38880414 DOI: 10.1016/j.radonc.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
PET is increasingly used for target volume definition in the radiotherapy of glioblastoma, as endorsed by the 2023 ESTRO-EANO guidelines. In view of its growing adoption into clinical practice and upcoming PET-based multi-center trials, this paper aims to assist in overcoming common pitfalls of FET PET-based target delineation in glioblastoma.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Ahmanson Translational Theranostics Division, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA.
| | - Alexander Nitschmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian H Maier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Daniel F Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | | | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), Tübingen, Germany
| |
Collapse
|
3
|
Pan Y, Dang H, Zhou H, Fu H, Wu S, Liu H, Zhang J, Wang R, Tian Y, Xu B. A comparison study of dynamic [ 18F]Alfatide II imaging and [ 11C]MET in orthotopic rat models of glioblastoma. J Cancer Res Clin Oncol 2024; 150:208. [PMID: 38647690 PMCID: PMC11035414 DOI: 10.1007/s00432-024-05688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To investigate and compare the dynamic positron emission tomography (PET) imaging with [18F]Alfatide II Imaging and [11C]Methionine ([11C]MET) in orthotopic rat models of glioblastoma multiforme (GBM), and to assess the utility of [18F]Alfatide II in detecting and evaluating neoangiogenesis in GBM. METHODS [18F]Alfatide II and [11C]MET were injected into the orthotopic GBM rat models (n = 20, C6 glioma cells), followed by dynamic PET/MR scans 21 days after surgery of tumor implantation. On the PET image with both radiotracers, the MRI-based volume-of-interest (VOI) was manually delineated encompassing glioblastoma. Time-activity curves were expressed as tumor-to-normal brain ratio (TNR) parameters and PET pharmacokinetic modeling (PKM) performed using 2-tissue-compartment models (2TCM). Immunofluorescent staining (IFS), western blotting and blocking experiment of tumor tissue were performed for the validation. RESULTS Compared to 11C-MET, [18F]Alfatide II presented a persistent accumulation in the tumor, albeit with a slightly lower SUVmean of 0.79 ± 0.25, and a reduced uptake in the contralateral normal brain tissue, respectively. This resulted in a markedly higher tumor-to-normal brain ratio (TNR) of 18.22 ± 1.91. The time-activity curve (TACs) showed a significant increase in radioactive uptake in tumor tissue, followed by a plateau phase up to 60 min for [18F]Alfatide II (time to peak:255 s) and 40 min for [11C]MET (time to peak:135 s) post injection. PKM confirmed significantly higher K1 (0.23/0.07) and K3 (0.26/0.09) in the tumor region compared to the normal brain with [18F]Alfatide II. Compared to [11C]MET imaging, PKM confirmed both significantly higher K1/K2 (1.24 ± 0.79/1.05 ± 0.39) and K3/K4 (11.93 ± 4.28/3.89 ± 1.29) in the tumor region with [18F]Alfatide II. IFS confirmed significant expression of integrin and tumor vascularization in tumor region. CONCLUSION [18F]Alfatide II demonstrates potential in imaging tumor-associated neovascularization in the context of glioblastoma multiforme (GBM), suggesting its utility as a tool for further exploration in neovascular characterization.
Collapse
Affiliation(s)
- Yue Pan
- Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China
| | - Haodan Dang
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China
| | - Haoxi Zhou
- Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Huaping Fu
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China
| | - Shina Wu
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China
| | - Huanhuan Liu
- Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China
| | - Jinming Zhang
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China
| | - Ruimin Wang
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China
| | - Yuan Tian
- Department of Radiology, The 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Baixuan Xu
- Department of Nuclear Medicine, First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Beijing, 100853, China.
| |
Collapse
|
4
|
Issa ASM, Scheins J, Tellmann L, Brambilla CR, Lohmann P, Rota-Kops E, Herzog H, Neuner I, Shah NJ, Lerche C. Impact of improved dead time correction on the quantification accuracy of a dedicated BrainPET scanner. PLoS One 2024; 19:e0296357. [PMID: 38578749 PMCID: PMC10997125 DOI: 10.1371/journal.pone.0296357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/11/2023] [Indexed: 04/07/2024] Open
Abstract
OBJECTIVE Quantitative values derived from PET brain images are of high interest for neuroscientific applications. Insufficient DT correction (DTC) can lead to a systematic bias of the output parameters obtained by a detailed analysis of the time activity curves (TACs). The DTC method currently used for the Siemens 3T MR BrainPET insert is global, i.e., differences in DT losses between detector blocks are not considered, leading to inaccurate DTC and, consequently, to inaccurate measurements masked by a bias. However, following careful evaluation with phantom measurements, a new block-pairwise DTC method has demonstrated a higher degree of accuracy compared to the global DTC method. APPROACH Differences between the global and the block-pairwise DTC method were studied in this work by applying several radioactive tracers. We evaluated the impact on [11C]ABP688, O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and [15O]H2O TACs. RESULTS For [11C]ABP688, a relevant bias of between -0.0034 and -0.0053 ml/ (cm3 • min) was found in all studied brain regions for the volume of distribution (VT) when using the current global DTC method. For [18F]FET-PET, differences of up to 10% were observed in the tumor-to-brain ratio (TBRmax), these differences depend on the radial distance of the maximum from the PET isocenter. For [15O]H2O, differences between +4% and -7% were observed in the GM region. Average biases of -4.58%, -3.2%, and -1.2% for the regional cerebral blood flow (CBF (K1)), the rate constant k2, and the volume of distribution VT were observed, respectively. Conversely, in the white matter region, average biases of -4.9%, -7.0%, and 3.8% were observed for CBF (K1), k2, and VT, respectively. CONCLUSION The bias introduced by the global DTC method leads to an overestimation in the studied quantitative parameters for all applications compared to the block-pairwise method. SIGNIFICANCE The observed differences between the two DTC methods are particularly relevant for research applications in neuroscientific studies as they affect the accuracy of quantitative Brain PET images.
Collapse
Affiliation(s)
- Ahlam Said Mohamad Issa
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA, BRAIN, Translational Medicine, Aachen, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Jürgen Scheins
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Lutz Tellmann
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | | | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Elena Rota-Kops
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Hans Herzog
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Irene Neuner
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA, BRAIN, Translational Medicine, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
- JARA, BRAIN, Translational Medicine, Aachen, Germany
- Department of Neurology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
5
|
Harat M, Miechowicz I, Rakowska J, Zarębska I, Małkowski B. A Biopsy-Controlled Prospective Study of Contrast-Enhancing Diffuse Glioma Infiltration Based on FET-PET and FLAIR. Cancers (Basel) 2024; 16:1265. [PMID: 38610944 PMCID: PMC11010945 DOI: 10.3390/cancers16071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024] Open
Abstract
Accurately defining glioma infiltration is crucial for optimizing radiotherapy and surgery, but glioma infiltration is heterogeneous and MRI imperfectly defines the tumor extent. Currently, it is impossible to determine the tumor infiltration gradient within a FLAIR signal. O-(2-[18F]fluoroethyl)-L-tyrosine (FET)-PET often reveals high-grade glioma infiltration beyond contrast-enhancing areas on MRI. Here, we studied FET uptake dynamics in tumor and normal brain structures by dual-timepoint (10 min and 40-60 min post-injection) acquisition to optimize analysis protocols for defining glioma infiltration. Over 300 serial stereotactic biopsies from 23 patients (mean age 47, 12 female/11 male) of diffuse contrast-enhancing gliomas were taken from areas inside and outside contrast enhancement or outside the FET hotspot but inside FLAIR. The final diagnosis was G4 in 11, grade 3 in 10, and grade 2 in 2 patients. The target-to-background (TBRs) ratios and standardized uptake values (SUVs) were calculated in areas used for biopsy planning and in background structures. The optimal method and threshold values were determined to find a preferred strategy for defining glioma infiltration. Standard thresholding (1.6× uptake in the contralateral brain) in standard acquisition PET images differentiated a tumor of any grade from astrogliosis, although the uptake in astrogliosis and grade 2 glioma was similar. Analyzing an optimal strategy for infiltration volume definition astrogliosis could be accurately differentiated from tumor samples using a choroid plexus as a background. Early acquisition improved the AUC in many cases, especially within FLAIR, from 56% to 90% sensitivity and 41% to 61% specificity (standard TBR 1.6 vs. early TBR plexus). The current FET-PET evaluation protocols for contrast-enhancing gliomas are limited, especially at the tumor border where grade 2 tumor and astrogliosis have similar uptake, but using choroid plexus uptake in early acquisitions as a background, we can precisely define a tumor within FLAIR that was outside of the scope of current FET-PET protocols.
Collapse
Affiliation(s)
- Maciej Harat
- Department of Neurooncology and Radiosurgery, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, 85-796 Bydgoszcz, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Józefina Rakowska
- Department of Neurosurgery, 10th Military Research Hospital, 85-681 Bydgoszcz, Poland;
| | - Izabela Zarębska
- Department of Radiotherapy, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland;
| | - Bogdan Małkowski
- Department of Nuclear Medicine, Franciszek Lukaszczyk Oncology Center, 85-796 Bydgoszcz, Poland
- Department of Diagnostic Imaging, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
6
|
Yu P, Wang Y, Su F, Chen Y. Comparing [18F]FET PET and [18F]FDOPA PET for glioma recurrence diagnosis: a systematic review and meta-analysis. Front Oncol 2024; 13:1346951. [PMID: 38269019 PMCID: PMC10805829 DOI: 10.3389/fonc.2023.1346951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Purpose The purpose of our meta-analysis and systematic review was to evaluate and compare the diagnostic effectiveness of [18F]FET PET and [18F]FDOPA PET in detecting glioma recurrence. Methods Sensitivities and specificities were assessed using the DerSimonian and Laird methodology, and subsequently transformed using the Freeman-Tukey double inverse sine transformation. Confidence intervals were computed employing the Jackson method, while heterogeneity within and between groups was evaluated through the Cochrane Q and I² statistics. If substantial heterogeneity among the studies was observed (P < 0.10 or I² > 50%), we conducted meta-regression and sensitivity analyses. Publication bias was assessed through the test of a funnel plot and the application of Egger's test. For all statistical tests, except for assessing heterogeneity (P < 0.10), statistical significance was determined when the two-tailed P value fell below 0.05. Results Initially, 579 publications were identified, and ultimately, 22 studies, involving 1514 patients(1226 patients for [18F]FET PET and 288 patients for [18F]FDOPA PET), were included in the analysis. The sensitivity and specificity of [18F]FET PET were 0.84 (95% CI, 0.75-0.90) and 0.86 (95% CI, 0.80-0.91), respectively, while for [18F]FDOPA PET, the values were 0.95 (95% CI, 0.86-1.00) for sensitivity and 0.90 (95% CI, 0.77-0.98) for specificity. A statistically significant difference in sensitivity existed between these two radiotracers (P=0.04), while no significant difference was observed in specificity (P=0.58). Conclusion It seems that [18F]FDOPA PET demonstrates superior sensitivity and similar specificity to [18F] FET PET. Nevertheless, it's crucial to emphasize that [18F]FDOPA PET results were obtained from studies with limited sample sizes. Further larger prospective studies, especially head-to-head comparisons, are needed in this issue. Systematic Review Registration identifier CRD42023463476.
Collapse
Affiliation(s)
| | | | | | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
The new era of bio-molecular imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) in neurosurgery of gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Brighi C, Puttick S, Li S, Keall P, Neville K, Waddington D, Bourgeat P, Gillman A, Fay M. A novel semiautomated method for background activity and biological tumour volume definition to improve standardisation of 18F-FET PET imaging in glioblastoma. EJNMMI Phys 2022; 9:9. [PMID: 35122529 PMCID: PMC8818070 DOI: 10.1186/s40658-022-00438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Multicentre clinical trials evaluating the role of 18F-Fluoroethyl-l-tyrosine (18F-FET) PET as a diagnostic biomarker in glioma management have highlighted a need for standardised methods of data analysis. 18F-FET uptake normalised against background in the contralateral brain is a standard imaging technique to delineate the biological tumour volume (BTV). Quantitative analysis of 18F-FET PET images requires a consistent and robust background activity. Currently, defining background activity involves the manual selection of an arbitrary region of interest, a process that is subject to large variability. This study aims to eliminate methodological errors in background activity definition through the introduction of a semiautomated method for region of interest selection. A new method for background activity definition, involving the semiautomated generation of mirror-image (MI) reference regions, was compared with the current state-of-the-art method, involving manually drawing crescent-shape (gCS) reference regions. The MI and gCS methods were tested by measuring values of background activity and resulting BTV of 18F-FET PET scans of ten patients with recurrent glioblastoma multiforme generated from inputs provided by seven readers. To assess intra-reader variability, each scan was evaluated six times by each reader. Intra- and inter-reader variability in background activity and BTV definition was assessed by means of coefficient of variation. Results Compared to the gCS method, the MI method showed significantly lower intra- and inter-reader variability both in background activity and in BTV definition. Conclusions The proposed semiautomated MI method minimises intra- and inter-reader variability, providing a valuable approach for standardisation of 18F-FET PET quantitative parameters. Trial registration ANZCTR, ACTRN12618001346268. Registered 9 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374253 Supplementary Information The online version contains supplementary material available at 10.1186/s40658-022-00438-2.
Collapse
Affiliation(s)
- Caterina Brighi
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Simon Puttick
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Shenpeng Li
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Paul Keall
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - David Waddington
- ACRF Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Pierrick Bourgeat
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Ashley Gillman
- Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organization, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michael Fay
- GenesisCare, Newcastle, Australia.,School of Medicine and Public Health, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
9
|
Lohaus N, Mader C, Jelcic I, Reimann R, Huellner MW. Acute Disseminated Encephalomyelitis in FET PET/MR. Clin Nucl Med 2022; 47:e137-e139. [PMID: 34507326 DOI: 10.1097/rlu.0000000000003879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACT After 3 weeks of daily headache, a 28-year-old, otherwise healthy woman was admitted to the emergency department with a first-time generalized seizure. CT showed a left frontal mass with perifocal edema. Brain MRI raised the suspicion of cerebral lymphoma. Cerebrospinal fluid analysis revealed mononuclear pleocytosis of 14 cells/μL without malignant cells, normal protein levels, and absence of oligoclonal bands. FET PET/MRI of the lesion showed FET characteristics of inflammatory disease, and acute disseminated encephalomyelitis was suggested as diagnosis. Final histopathological results from brain biopsy confirmed acute disseminated encephalomyelitis.
Collapse
|
10
|
Cheng X, Ma L. Enzymatic synthesis of fluorinated compounds. Appl Microbiol Biotechnol 2021; 105:8033-8058. [PMID: 34625820 PMCID: PMC8500828 DOI: 10.1007/s00253-021-11608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/31/2022]
Abstract
Fluorinated compounds are widely used in the fields of molecular imaging, pharmaceuticals, and materials. Fluorinated natural products in nature are rare, and the introduction of fluorine atoms into organic compound molecules can give these compounds new functions and make them have better performance. Therefore, the synthesis of fluorides has attracted more and more attention from biologists and chemists. Even so, achieving selective fluorination is still a huge challenge under mild conditions. In this review, the research progress of enzymatic synthesis of fluorinated compounds is summarized since 2015, including cytochrome P450 enzymes, aldolases, fluoroacetyl coenzyme A thioesterases, lipases, transaminases, reductive aminases, purine nucleoside phosphorylases, polyketide synthases, fluoroacetate dehalogenases, tyrosine phenol-lyases, glycosidases, fluorinases, and multienzyme system. Of all enzyme-catalyzed synthesis methods, the direct formation of the C-F bond by fluorinase is the most effective and promising method. The structure and catalytic mechanism of fluorinase are introduced to understand fluorobiochemistry. Furthermore, the distribution, applications, and future development trends of fluorinated compounds are also outlined. Hopefully, this review will help researchers to understand the significance of enzymatic methods for the synthesis of fluorinated compounds and find or create excellent fluoride synthase in future research.Key points• Fluorinated compounds are distributed in plants and microorganisms, and are used in imaging, medicine, materials science.• Enzyme catalysis is essential for the synthesis of fluorinated compounds.• The loop structure of fluorinase is the key to forming the C-F bond.
Collapse
Affiliation(s)
- Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Laboratory of Metabolic Control Fermentation Technology, College of Biotechnology, Tianjin University of Science & Technology, No. 29, Thirteenth Street, Binhai New District, Tianjin, 300457, China.
| |
Collapse
|
11
|
Puranik AD, Rangarajan V, Dev ID, Jain Y, Purandare NC, Sahu A, Choudhary A, Gupta T, Chatterjee A, Moiyadi A, Shetty P, Sridhar E, Sahay A, Patil VM, Shah S, Agrawal A. Brain FET PET tumor-to-white mater ratio to differentiate recurrence from post-treatment changes in high-grade gliomas. J Neuroimaging 2021; 31:1211-1218. [PMID: 34388273 DOI: 10.1111/jon.12914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Highergrade glial neoplasms undergo standard treatment with surgery, radiotherapy, and alkylating agents. There is often a clinical/neuroimaging dilemma in the post-treatment setting to differentiate disease recurrence from treatment-related changes. FET (fluoro-ethyl-tyrosine) PET has emerged as a molecular imaging modality for cases where MR imaging is inconclusive. This study aims to develop a cutoff on FET PET for differentiating true recurrence from post-treatment changes. METHODS We retrospectively analyzed72 patientswith post-treatment grade 3 or 4 brain gliomas. Five to six mCi of 18 F-FET was injected and static imaging of the brain was performed at 20 min. A tumor-to-white matter (T/Wm) ratio was used as semiquantitative parameter. A T/Wm cutoff of 2.5 was used for image interpretation. Imaging findings were confirmed by either histopathologic diagnosis in a multidisciplinary joint clinic or based on follow-up of clinical and neuroimaging findings. RESULTS Forty-one of 72 patients (57%) showed recurrent disease on FET PET. Thirty-five of them were confirmed to have tumor recurrence; six patients showed post-treatment changes. Thirty-one of 72 patients (43%) showed post-treatment changes on FET PET; 27 were confirmed as post-treatment change and four patients had tumor recurrence on subsequent MR imaging. An optimum T/Wm cutoff of 2.65 was derived based on receiver operating characteristic analysis with a sensitivity of 80% and specificity of 87.5%. CONCLUSION Static FET PET can be used as problem-solving imaging modality with a T/Wm cutoff of 2.65 to differentiate late recurrence from post-treatment changes in grade 3 or 4 brain gliomas with equivocal MR features.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Indraja D Dev
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Amitkumar Choudhary
- Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neuro-surgery, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Prakash Shetty
- Department of Neuro-surgery, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Navi Mumbai, India
| | - Epari Sridhar
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vijay M Patil
- Department of Medical Oncology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|