1
|
Seibel C, Pudewell S, Rafii P, Ettich J, Weitz HT, Lang A, Petzsch P, Köhrer K, Floss DM, Scheller J. Synthetic trimeric interleukin-6 receptor complexes with a STAT3 phosphorylation dominated activation profile. Cytokine 2024; 184:156766. [PMID: 39348731 DOI: 10.1016/j.cyto.2024.156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
In Interleukin (IL)-6 signalling, IL-6 site I binds to the IL-6 receptor (IL-6R) first, following by IL-6 site II interaction to domain 2/3 of gp130 to form premature trimeric IL-6:IL-6R:gp130 receptor complexes. Formation of the mature hexameric receptor complex is then facilitated by the inter-trimeric interaction of IL-6 site III with domain 1 of the opposing gp130. The two gp130-associated Janus kinases (JAKs) trans-phosphorylate when their spatiotemporal pairing is correct, which causes the activation of STAT, ERK, and AKT pathways in a balanced manner. Since the intracellular domain (ICD) of IL-6R is not needed for STAT/ERK/AKT phosphorylation, we investigated the conditions under which a chimeric IL-6RECD-gp130TMD/ICD receptor protein confers biological activity. For IL-6RECD-gp130TMD/ICD, the extracellular domain (ECD) of IL-6R was fused to the transmembrane domain (TMD) and ICD of gp130. Co-expression of IL-6RECD-gp130TMD/ICD with signalling-deficient gp130 variants did not induce IL-6 signalling, suggesting that the assembly of hexameric complexes failed to dimerize the IL-6R-associated JAKs correctly. By mimicking the premature trimeric receptor complex, IL-6-mediated dimerization of IL-6RECD-gp130TMD/ICD with the single-cytokine-binding variant gp130ΔD1 induced signalling. Of note, IL-6 signalling via these synthetic gp130ΔD1:IL-6RECD-gp130TMD/ICD complexes resulted predominantly in STAT3 phosphorylation. A STAT3-dominated profile was also observed after IL-6-induced signalling mediated by a JAK-deficient IL-6RECD-gp130TMD/ICDΔJAK variant in complex with the JAK-proficient but STAT/ERK/AKT-deficient gp130JAKΔICD variant. Our data showed that effective ERK/AKT signalling could not be executed after intracellular domain swapping from gp130 to the IL-6R. Taken together, the chimeric IL-6R/gp130 receptor may be helpful in the creation of customized synthetic IL-6 signalling.
Collapse
Affiliation(s)
- Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
2
|
Baumgärtner LAF, Ettich J, Balles H, Lapp DJ, Mossner S, Bassenge C, Ouzin M, Hanenberg H, Scheller J, Floss DM. Unpaired cysteine insertions favor transmembrane dimerization and induce ligand-independent constitutive cytokine receptor signaling. Biol Chem 2024; 405:531-544. [PMID: 38695485 DOI: 10.1515/hsz-2023-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024]
Abstract
Naturally occurring gain-of-function (GOF) mutants have been identified in patients for a variety of cytokine receptors. Although this constitutive activation of cytokine receptors is strongly associated with malignant disorders, ligand-independent receptor activation is also a useful tool in synthetic biology e.g. to improve adoptive cellular therapies with genetically modified T-cells. Balanced Interleukin (IL-)7 signaling via a heterodimer of IL-7 receptor (IL-7Rα) and the common γ-chain (γc) controls T- and B-cell development and expansion, whereas uncontrolled IL-7 signaling can drive acute lymphoid leukemia (ALL) development. The ALL-driver mutation PPCL in the transmembrane domain of IL-7Rα is a mutational insertion of the four amino acids proline-proline-cysteine-leucine and leads to ligand-independent receptor dimerization and constitutive activation. We showed here in the cytokine-dependent pre-B-cell line Ba/F3 that the PPCL-insertion in a synthetic version of the IL-7Rα induced γc-independent STAT5 and ERK phosphorylation and also proliferation of the cells and that booster-stimulation by arteficial ligands additionally generated non-canonical STAT3 phosphorylation via the synthetic IL-7Rα-PPCL-receptors. Transfer of the IL-7Rα transmembrane domain with the PPCL insertion into natural and synthetic cytokine receptor chains of the IL-6, IL-12 and Interferon families also resulted in constitutive receptor signaling. In conclusion, our data suggested that the insertion of the mutated PPCL IL-7Rα transmembrane domain is an universal approach to generate ligand-independent, constitutively active cytokine receptors.
Collapse
Affiliation(s)
- Lynn Affrica Felicitas Baumgärtner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Helene Balles
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dorothee Johanna Lapp
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Christin Bassenge
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Meryem Ouzin
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Doreen Manuela Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Rafii P, Cruz PR, Ettich J, Seibel C, Padrini G, Wittich C, Lang A, Petzsch P, Köhrer K, Moll JM, Floss DM, Scheller J. Engineered interleukin-6-derived cytokines recruit artificial receptor complexes and disclose CNTF signaling via the OSMR. J Biol Chem 2024; 300:107251. [PMID: 38569939 PMCID: PMC11039321 DOI: 10.1016/j.jbc.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
Ciliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling β-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes. Similar to CNTF/Axokine, IC7 protected mice from obesity and insulin resistance. Here, we developed CNTF-independent chimeras that specifically target the IL-6R:gp130:LIFR complex. In GIL-6 and GIO-6, we transferred the LIFR binding site from LIF or OSM to IL-6, respectively. While GIO-6 signals via gp130:IL-6R:LIFR and gp130:IL-6R:OSMR complexes, GIL-6 selectively activates the IL-6R:gp130:LIFR receptor complex. By re-evaluation of IC7 and CNTF, we discovered the Oncostatin M receptor (OSMR) as an alternative non-canonical high-affinity receptor leading to IL-6R:OSMR:gp130 and CNTFR:OSMR:gp130 receptor complexes, respectively. The discovery of OSMR as an alternative high-affinity receptor for IC7 and CNTF designates GIL-6 as the first truly selective IL-6R:gp130:LIFR cytokine, whereas GIO-6 is a CNTF-free alternative for IC7.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patricia Rodrigues Cruz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Giacomo Padrini
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Rafii P, Seibel C, Weitz HT, Ettich J, Minafra AR, Petzsch P, Lang A, Floss DM, Behnke K, Köhrer K, Moll JM, Scheller J. Cytokimera GIL-11 rescued IL-6R deficient mice from partial hepatectomy-induced death by signaling via non-natural gp130:LIFR:IL-11R complexes. Commun Biol 2023; 6:418. [PMID: 37061565 PMCID: PMC10105715 DOI: 10.1038/s42003-023-04768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/27/2023] [Indexed: 04/17/2023] Open
Abstract
All except one cytokine of the Interleukin (IL-)6 family share glycoprotein (gp) 130 as the common β receptor chain. Whereas Interleukin (IL-)11 signal via the non-signaling IL-11 receptor (IL-11R) and gp130 homodimers, leukemia inhibitory factor (LIF) recruits gp130:LIF receptor (LIFR) heterodimers. Using IL-11 as a framework, we exchange the gp130-binding site III of IL-11 with the LIFR binding site III of LIF. The resulting synthetic cytokimera GIL-11 efficiently recruits the non-natural receptor signaling complex consisting of gp130, IL-11R and LIFR resulting in signal transduction and proliferation of factor-depending Ba/F3 cells. Besides LIF and IL-11, GIL-11 does not activate receptor complexes consisting of gp130:LIFR or gp130:IL-11R, respectively. Human GIL-11 shows cross-reactivity to mouse and rescued IL-6R-/- mice following partial hepatectomy, demonstrating gp130:IL-11R:LIFR signaling efficiently induced liver regeneration. With the development of the cytokimera GIL-11, we devise the functional assembly of the non-natural cytokine receptor complex of gp130:IL-11R:LIFR.
Collapse
Affiliation(s)
- Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Christiane Seibel
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Anna Rita Minafra
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Alexander Lang
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Karl Köhrer
- Cardiovascular Research Laboratory, Medical Faculty, University Hospital Düsseldorf, 40225, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
6
|
Cabalteja CC, Sachdev S, Cheloha RW. Characterization of a Nanobody-Epitope Tag Interaction and Its Application for Receptor Engineering. ACS Chem Biol 2022; 17:2296-2303. [PMID: 35930411 PMCID: PMC10200313 DOI: 10.1021/acschembio.2c00407] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Peptide epitope tags offer a valuable means for detection and manipulation of protein targets for which high quality detection reagents are not available. Most commonly used epitope tags are bound by conventional, full-size antibodies (Abs). The complex architecture of Abs complicates their application in protein engineering and intracellular applications. To address these shortcomings, single domain antibodies (nanobodies, Nbs) that recognize short peptide epitopes have become increasingly prized. Here, we characterize the interaction between a Nb (Nb6E) and a 14-mer peptide epitope. We identify residues in the peptide epitope essential for high affinity binding. Using this information in combination with computational modeling we propose a mode of interaction between Nb6E and this epitope. We apply this nanobody-epitope pair to augment the potency of a ligand at an engineered adenosine A2A receptor. This characterization of the nanobody-epitope pair opens the door to diverse applications including mechanistic studies of the G protein-coupled receptor function.
Collapse
Affiliation(s)
- Chino C. Cabalteja
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD 20892, USA
| | - Shivani Sachdev
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD 20892, USA
| | - Ross W. Cheloha
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Mossner S, Floss DM, Scheller J. Pro- and anti-apoptotic fate decisions induced by di- and trimeric synthetic cytokine receptors. iScience 2021; 24:102471. [PMID: 34113818 PMCID: PMC8169946 DOI: 10.1016/j.isci.2021.102471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
Synthetic strategies to activate cytokine receptors so far only address standard dimeric cytokine receptor assemblies. The 19 ligands of the tumor necrosis factor superfamily (TNFSF), however, form noncovalent trimers and receptor trimerization is considered to be essential for receptor activation. Synthetic TNFR1, TNFR2, and Fas/CD95 receptors were activated by synthetic trimeric ligands which induced NF-κB signaling or Caspase-induced apoptosis. Albeit dimeric receptor activation did not induce synthetic TNFR1 and TNFR2 signaling, dimeric FasL induced extenuated apoptosis. Simultaneous integration of dimeric Interleukin (IL-)6 receptor gp130 and trimeric Fas as synthetic cytokine receptors in one cell enabled binary cell fate decisions, gp130-mediated proliferation or Fas-mediated apoptosis. In summary, our modular fully synthetic cytokine signaling system allows precisely orchestrated cellular responses to selectively induce pro- and anti-apoptotic signaling via canonical dimeric receptors of the IL-6 family and non-canonical trimeric receptor complexes of the TNF superfamily. SyCyRs induce TNFR1 or TNFR2 mediated NF-κB activation as trimers or oligomers. Fas-SyCyR induces Caspase-induced apoptosis as trimer and as dimer. Synthetic loss of function Fas-SyCyR fails to induce Caspase mediated apoptosis. gp130-and Fas-SyCyR in one cell enable proliferation via gp130 or apoptosis via Fas.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Doreen Manuela Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Mossner S, Phan HT, Triller S, Moll JM, Conrad U, Scheller J. Correction: Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 2020; 15:e0238925. [PMID: 32881955 PMCID: PMC7470397 DOI: 10.1371/journal.pone.0238925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Mossner S, Kuchner M, Fazel Modares N, Knebel B, Al-Hasani H, Floss DM, Scheller J. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem 2020; 295:12378-12397. [PMID: 32611765 PMCID: PMC7458808 DOI: 10.1074/jbc.ra120.013927] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cytokine signaling is transmitted by cell-surface receptors that function as biological switches controlling mainly immune-related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP and mCherry nanobodies fused to transmembrane and intracellular domains of cytokine receptors that phenocopy cytokine signaling induced by nonphysiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 (IL-22) signals via both IL-22 receptor α1 (IL-22Rα1) and the common IL-10R2, belongs to the IL-10 cytokine family, and is critically involved in tissue regeneration. Here, IL-22 SyCyRs phenocopied native IL-22 signal transduction, indicated by induction of cytokine-dependent cellular proliferation, signal transduction, and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which previously was considered not to induce signal transduction, led to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) constructs could form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we have demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors, identified a functional IL-10R2 homodimeric receptor complex, and uncovered broad receptor cross-talk of IL-22Rα1 and IL-20R2 with gp130.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcus Kuchner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|