1
|
Vargas LC, Faria LC, Pereira LT, Signori CN. Water masses drive the spatial and temporal distribution of marine Archaea in the northern Antarctic Peninsula. AN ACAD BRAS CIENC 2024; 96:e20240585. [PMID: 39699520 DOI: 10.1590/0001-3765202420240585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
The Southern Ocean influences the planet's biogeochemical cycles. Marine microorganisms are important in this scenario, being the main biological agents in the cycling of many elements. The Archaea domain is widely distributed in the oceans, and its presence in Antarctica is acknowledged. In this context, this work aimed to analyze the diversity and distribution of archaea according to environmental parameters in the waters surrounding the north of the Antarctic Peninsula. For environmental characterization studies, surface and bottom data were used for the ten monitoring stations of expeditions that took place in the summer of 2014 and 2015. The sequencing of the 16S rRNA gene was performed on the Illumina HiSeq platform, using the SILVA v138 database. The results revealed the presence of three main water bodies: Antarctic Surface Water, Shelf Waters, and modified Circumpolar Deep Water. Deep waters had higher diversity than surface waters, and the dominant groups were Nitrososphaeria and MGII. In the study region, the main factor responsible for the differences in the ecosystems was the presence of distinct water masses and the stratification of the water column. We argue that it is essential to consider water mass dynamics to study the microbial landscape of the Southern Ocean.
Collapse
Affiliation(s)
- Luana C Vargas
- Universidade de São Paulo, Instituto Oceanográfico, Departamento de Oceanografia Biológica, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil
| | - Laiza C Faria
- Universidade de São Paulo, Instituto Oceanográfico, Departamento de Oceanografia Biológica, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil
| | - Lucas T Pereira
- Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Meteorologia, Rua do Matão, 1226, 05508-090 São Paulo, SP, Brazil
| | - Camila N Signori
- Universidade de São Paulo, Instituto Oceanográfico, Departamento de Oceanografia Biológica, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil
| |
Collapse
|
2
|
Pavia MJ, Garber AI, Avalle S, Macedo-Tafur F, Tello-Espinoza R, Cadillo-Quiroz H. Functional insights of novel Bathyarchaeia reveal metabolic versatility in their role in peatlands of the Peruvian Amazon. Microbiol Spectr 2024; 12:e0038724. [PMID: 39540749 PMCID: PMC11619403 DOI: 10.1128/spectrum.00387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The decomposition of soil organic carbon within tropical peatlands is influenced by the functional composition of the microbial community. In this study, building upon our previous work, we recovered a total of 28 metagenome-assembled genomes (MAGs) classified as Bathyarchaeia from the tropical peatlands of the Pastaza-Marañón Foreland Basin (PMFB) in the Amazon. Using phylogenomic analyses, we identified nine genus-level clades to have representatives from the PMFB, with four forming a putative novel family ("Candidatus Paludivitaceae") endemic to peatlands. We focus on the Ca. Paludivitaceae MAGs due to the novelty of this group and the limited understanding of their role within tropical peatlands. Functional analysis of these MAGs reveals that this putative family comprises facultative anaerobes, possessing the genetic potential for oxygen, sulfide, or nitrogen oxidation. This metabolic versatility can be coupled to the fermentation of acetoin, propanol, or proline. The other clades outside Ca. Paludivitaceae are putatively capable of acetogenesis and de novo amino acid biosynthesis and encode a high amount of Fe3+ transporters. Crucially, the Ca. Paludivitaceae are predicted to be carboxydotrophic, capable of utilizing CO for energy generation or biomass production. Through this metabolism, they could detoxify the environment from CO, a byproduct of methanogenesis, or produce methanogenic substrates like CO2 and H2. Overall, our results show the complex metabolism and various lineages of Bathyarchaeia within tropical peatlands pointing to the need to further evaluate their role in these ecosystems. IMPORTANCE With the expansion of the Candidatus Paludivitaceae family by the assembly of 28 new metagenome assembled genomes, this study provides novel insights into their metabolic diversity and ecological significance in peatland ecosystems. From a comprehensive phylogenic and functional analysis, we have elucidated their putative unique facultative anaerobic capabilities and CO detoxification potential. This research highlights their crucial role in carbon cycling and greenhouse gas regulation. These findings are essential for resolving the microbial processes affecting peat soil stability, offering new perspectives on the ecological roles of previously underexplored and underrepresented archaeal populations.
Collapse
Affiliation(s)
- Michael J. Pavia
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Arkadiy I. Garber
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Sarah Avalle
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Franco Macedo-Tafur
- Laboratory of Soil Research, Research Institute of Amazonia’s Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Rodil Tello-Espinoza
- Laboratory of Soil Research, Research Institute of Amazonia’s Natural Resources, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
- School of Forestry, National University of the Peruvian Amazon, Iquitos, Loreto, Peru
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
3
|
Borreca A, Vuilleumier S, Imfeld G. Combined effects of micropollutants and their degradation on prokaryotic communities at the sediment-water interface. Sci Rep 2024; 14:16840. [PMID: 39039186 PMCID: PMC11263610 DOI: 10.1038/s41598-024-67308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024] Open
Abstract
Pesticides and pharmaceuticals enter aquatic ecosystems as complex mixtures. Various processes govern their dissipation and effect on the sediment and surface waters. These micropollutants often show persistence and can adversely affect microorganisms even at low concentrations. We investigated the dissipation and effects on procaryotic communities of metformin (antidiabetic drug), metolachlor (agricultural herbicide), and terbutryn (herbicide in building materials). These contaminants were introduced individually or as a mixture (17.6 µM per micropollutant) into laboratory microcosms mimicking the sediment-water interface. Metformin and metolachlor completely dissipated within 70 days, whereas terbutryn persisted. Dissipation did not differ whether the micropollutants were introduced individually or as part of a mixture. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in both sediment and water. Prokaryotic community variations were mainly driven by matrix composition and incubation time. Micropollutant exposure played a secondary but influential role, with pronounced effects of recalcitrant metolachlor and terbutryn within the micropollutant mixture. Antagonistic and synergistic non-additive effects were identified for specific taxa across taxonomic levels in response to the micropollutant mixture. This study underscores the importance of considering the diversity of interactions between micropollutants, prokaryotic communities, and their respective environments when examining sediment-water interfaces affected by multiple contaminants.
Collapse
Affiliation(s)
- Adrien Borreca
- Institut Terre Et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000, Strasbourg, France
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156 CNRS, Université de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- Institut Terre Et Environnement de Strasbourg, UMR 7063 CNRS, ENGEES, Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
4
|
Nopnakorn P, Zhang Y, Yang L, Peng F. Antarctic Ardley Island terrace - An ideal place to study the marine to terrestrial succession of microbial communities. Front Microbiol 2023; 14:942428. [PMID: 36814563 PMCID: PMC9940900 DOI: 10.3389/fmicb.2023.942428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
The study of chronosequences is an effective tool to study the effects of environmental changes or disturbances on microbial community structures, diversity, and the functional properties of ecosystems. Here, we conduct a chronosequence study on the Ardley Island coastal terrace of the Fildes Peninsula, Maritime Antarctica. The results revealed that prokaryotic microorganism communities changed orderly among the six successional stages. Some marine microbial groups could still be found in near-coastal soils of the late stage (lowest stratum). Animal pathogenic bacteria and stress-resistant microorganisms occurred at the greatest level with the longest succession period. The main driving factors for the succession of bacteria, archaea, and fungi along Ardley Island terrace were found through Adonis analysis (PERMANOVA). During analysis, soil elements Mg, Si, and Na were related to the bacterial and archaeal community structure discrepancies, while Al, Ti, K, and Cl were related to the fungal community structure discrepancies. On the other hand, other environmental factors also play an important role in the succession of microbial communities, which could be different among each microorganism. The succession of bacterial communities is greatly affected by pH and water content; archaeal communities are greatly affected by N H 4 + ; fungal communities are affected by nutrients such as N O 3 - . In the analysis of the characteristic microorganisms along terrace, the succession of microorganisms was found to be influenced by complex and comprehensive factors. For instance, environmental instability, relationship with plants and ecological niches, and environmental tolerance. The results found that budding reproduction and/or with filamentous appendages bacteria were enriched in the late stage, which might be connected to its tolerance to rapid changes and barren environments. In addition, the decline in ammonia oxidation capacity of Thaumarchaeota archaeade with succession and the evolution of the fungi-plant relationship throughout classes were revealed. Overall, this research improves the understanding of the effect of the marine-to-terrestrial transition of the Ardley Island terrace on microbial communities. These findings will lay the foundation for more in-depth research regarding microbial adaptations and evolutionary mechanisms throughout the marine-terrestrial transition in the future.
Collapse
|
7
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|