1
|
Choudhary P, Shaw A, Ramalingam B, Das SK. Nanoengineered and highly porous 3D chitosan-graphene scaffold for enhanced antibacterial activity and rapid hemostasis. Int J Biol Macromol 2025; 306:141521. [PMID: 40020811 DOI: 10.1016/j.ijbiomac.2025.141521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Chitosan-based hydrogels have been utilized over the years as an efficient hemorrhage because of their biocompatibility and biodegradability nature. Here we have nanoengineered the polycationic peptide-conjugated graphene‑silver nanocomposite into the chitosan matrix as a 3D highly porous CGrSP scaffold to facilitate rapid hemostasis and prevent bacterial infection. This CGrSP scaffold interacted with blood cells and platelets, initiating the blood coagulation process by activating the plasmatic contact system. Notably, it reduced the activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT), indicating that the scaffold promoted platelet activation associated with Factors XII and X, leading to fibrin formation and clot stabilization. In vitro studies showed that the CGrSP scaffold reduced whole blood clotting time by 87 % compared to the commercial dressing "QuikClot." Additionally, in vivo studies using rat-tail amputation and skin laceration models demonstrated a significant reduction in hemostatic time compared to both the chitosan scaffold (p-value<0.003) and "QuikClot" (p-value<0.01). Beyond its hemostatic properties, the CGrSP scaffold exhibited strong antibacterial activity, achieving a 5-log reduction against both Escherichia coli and Staphylococcus aureus. With its biodegradable nature, rapid hemostasis, and potential for tissue regeneration, the CGrSP scaffold presents a novel and safe therapeutic material.
Collapse
Affiliation(s)
- Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Shaw
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Department of Civil Engineering, Anna University, Chennai 600020, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.
| |
Collapse
|
2
|
Yang H, Whitby CP, Travas-Sejdic J. Dual-network hydrogel capsules for controlled molecular transport via pH and temperature responsiveness. J Colloid Interface Sci 2025; 677:942-951. [PMID: 39178673 DOI: 10.1016/j.jcis.2024.08.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
We have developed innovative core-shell hydrogel capsules with a dual-network shell structure designed for precise control of molecular transport in response to external stimuli such as pH and temperature. The capsules were fabricated using a combination of microfluidic electrospray techniques and water-in-water (w/w) core-shell droplets templating. The primary network of the shell, calcium alginate (Ca-Alg), with a pKa around 3.4, exhibits sensitivity to pH. The secondary network of the shell, poly(ethylene glycol) methyl ether methacrylate (PEGMA), undergoes a volume phase transition near 60 °C. These properties enable precise molecular transport control in/out of the capsules by modulating the surface charges through varying pH and modifying pore size through temperature changes. Moreover, the dual-network shell structure not only significantly enhances the mechanical strength of the capsules but also improves their stability under external stimulus, ensuring structural integrity during the transport of molecules. This research lays the groundwork for further investigations into the multimodal stimuli-responsive hydrogel systems to control molecular transport, important in applications such as sensors and reactors for chemical cascade reactions.
Collapse
Affiliation(s)
- Hui Yang
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Catherine P Whitby
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand; School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
3
|
Poyraz Y, Baltacı N, Hassan G, Alayoubi O, Uysal BÖ, Pekcan Ö. Composite Hydrogel of Polyacrylamide/Starch/Gelatin as a Novel Amoxicillin Delivery System. Gels 2024; 10:625. [PMID: 39451278 PMCID: PMC11507288 DOI: 10.3390/gels10100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigates the development and characterization of a novel composite hydrogel composed of polyacrylamide (PAAm), starch, and gelatin for use as an amoxicillin delivery system. The optical properties, swelling behavior, and drug release profile of the composite hydrogel's were studied to evaluate its efficacy and potential applications. UV-visible spectroscopy was employed to determine the optical properties, revealing significant transparency in the visible range, which is essential for biomedical applications. The incorporation of starch and gelatin into the polyacrylamide matrix significantly enhanced the hydrogel's swelling capacity and biocompatibility. Studies on drug delivery demonstrated a sustained release profile of amoxicillin in simulated gastrointestinal fluids, which is essential for maintaining therapeutic levels for a prolonged amount of time. The results indicate that the composite hydrogel of PAAm/starch/gelatin has good swelling behavior, appealing optical characteristics, and a promising controlled drug release mechanism. These results point to this hydrogel's considerable potential as a drug delivery method, providing a viable path toward enhancing the medicinal effectiveness of amoxicillin and maybe other medications.
Collapse
Affiliation(s)
- Yağmur Poyraz
- Computational Sciences and Engineering, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Nisa Baltacı
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Gana Hassan
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Oubadah Alayoubi
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Bengü Özuğur Uysal
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey;
| | - Önder Pekcan
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey;
| |
Collapse
|
4
|
Lambrecht S, Gazizova A, Kara S, Meyer J, Jopp S. Antimicrobial properties and biocompatibility of semi-synthetic carbohydrate-based ionic hydrogels. RSC Adv 2024; 14:30719-30731. [PMID: 39328876 PMCID: PMC11425042 DOI: 10.1039/d4ra05695g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels have gained significant interest in the last decades, especially in the medical sector, due to their versatile properties. While hydrogels from naturally occurring polysaccharides (e.g. cellulose) are well-known, those produced from polymerizable carbohydrate-based monomers remain underexplored. However, these semi-synthetic hydrogels offer the great advantage of having adjustable properties for customization depending on their application. The objective of this study was to characterize semi-synthetic carbohydrate-based ionic hydrogels produced from GVIM-I (glucosyl vinyl imidazolium iodide). The antimicrobial activity was evaluated using the disk diffusion method, which demonstrated that all samples exhibit inhibitory effects on the growth of Candida auris. In vitro biocompatibility was determined by cell viability studies with L929 mouse fibroblasts, and a correlation was observed between eluate concentration and cell viability. In particular, the type of initiator system employed for polymerization was found to affect cell viability. The direct contact assessments showed that specific pre-treatments of the hydrogels resulted in higher cell viability than non-treated hydrogels. The results also revealed the impact of crosslinker concentration and type and identified poly(ethylene glycol)diacrylate (PEGDA) 575 as a promising crosslinker for future medical applications. LC-MS analysis of the wash medium identified unreacted GVIM-I as the leached material, which is presumed to be the cause of the observed cytotoxicity. Overall, the study provides valuable insights into the characteristics of GVIM-I based hydrogels and sheds light on the factors that influence their cytotoxicity and potential for medical application.
Collapse
Affiliation(s)
- Sina Lambrecht
- Department Life, Light & Matter, University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Alina Gazizova
- Institute of Chemistry, University of Rostock Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Selin Kara
- Institute of Technical Chemistry, Leibniz University Hannover Callinstraße 5 30167 Hannover Germany
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Johanna Meyer
- Institute of Technical Chemistry, Leibniz University Hannover Callinstraße 5 30167 Hannover Germany
| | - Stefan Jopp
- Department Life, Light & Matter, University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| |
Collapse
|
5
|
Romischke J, Eickner T, Grabow N, Kragl U, Oschatz S. 3-Sulfopropyl acrylate potassium-based polyelectrolyte hydrogels: sterilizable synthetic material for biomedical application. RSC Adv 2024; 14:28881-28888. [PMID: 39263439 PMCID: PMC11388722 DOI: 10.1039/d4ra03901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Hydrogels are extensively used in the biomedical field due to their highly valued properties, biocompatibility and antimicrobial activity and resistance to rheological stress. However, determining an efficient sterilization protocol that does not compromise the functional properties of hydrogels is one of the challenges researchers face when developing a material for a medical application. In this work, conventional sterilization methods (steam-, radiation- and gas sterilization) were investigated regarding the influence on the degree of swelling, mechanical performance and chemical effects on the poly 3-sulfopropyl acrylate potassium (pAESO3) hydrogel, which is a promising representative for biomedical engineering applications. In summary, no significant changes in the gel properties were observed after sterilization, showing the potential of the selected hydrogel for biomedical applications.
Collapse
Affiliation(s)
- Johanna Romischke
- University of Rostock, Institute of Chemistry, Department of Industrial and Analytical Chemistry Albert-Einstein-Str. 3A Rostock 18059 Germany
| | - Thomas Eickner
- Rostock University Medical Center, Institute for Biomedical Engineering Friedrich-Barnewitz-Str. 4 18119 Rostock Germany
| | - Niels Grabow
- Rostock University Medical Center, Institute for Biomedical Engineering Friedrich-Barnewitz-Str. 4 18119 Rostock Germany
- Department Life, Light & Matter (LLM), University of Rostock Rostock Germany
| | - Udo Kragl
- University of Rostock, Institute of Chemistry, Department of Industrial and Analytical Chemistry Albert-Einstein-Str. 3A Rostock 18059 Germany
- Department Life, Light & Matter (LLM), University of Rostock Rostock Germany
| | - Stefan Oschatz
- Rostock University Medical Center, Institute for Biomedical Engineering Friedrich-Barnewitz-Str. 4 18119 Rostock Germany
| |
Collapse
|
6
|
Algi MP, Sarıgöl R. Cross-linker engineered poly(hydroxyethyl methacrylate) hydrogel allows photodynamic and photothermal therapies and controlled drug release. Eur J Pharm Biopharm 2024; 202:114419. [PMID: 39038524 DOI: 10.1016/j.ejpb.2024.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Here, we disclose the synthesis of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels incorporating a squaraine dye (Sq) as a chemical crosslinker, viz. Sq@PHEMA. Photothermal and photodynamic features of Sq@PHEMA hydrogels are evaluated in detail. It is noteworthy that Sq@PHEMA induces hyperthermia upon irradiation with an 808 nm laser. Furthermore, Sq@PHEMA enables the generation of reactive oxygen species (ROS) upon irradiation with red light. To our delight, Sq@PHEMA hydrogels can be used as efficient dual photosensitizers pertinent to both PDT and PTT simultaneously. Finally, the hydrogels are loaded with methotrexate (MTX) to investigate controlled drug release behavior. It is noted that Sq@PHEMA hydrogels are promising candidates as drug delivery systems since on-demand MTX release is feasible upon irradiation. In summary, we effectively demonstrate that hydrogel cross-linker engineering allows for synergistic photodynamic and photothermal therapy. Furthermore, drug delivery is also feasible with the Sq@PHEMA core.
Collapse
Affiliation(s)
- Melek Pamuk Algi
- Department of Chemistry & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey.
| | - Rumeysa Sarıgöl
- Department of Biotechnology & ASUBTAM M. Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
7
|
Wang Z, Mahmood N, Budhathoki-Uprety J, Brown AC, King MW, Gluck JM. Preparation and Characterization of Hydrogels Fabricated From Chitosan and Poly(vinyl alcohol) for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2024; 7:5519-5529. [PMID: 39037196 DOI: 10.1021/acsabm.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In this study, we report on the preparation, characterization, and cytocompatibility of hydrogels for biomedical applications made from two different molecular weights of chitosan (CS) blended with poly(vinyl alcohol) (PVA) and chemically cross-linked with tetraethyl orthosilicate (TEOS) followed by freeze-drying. A series of CS-PVA hydrogels were synthesized with different amounts of chitosan (1%, 2%, and 3% by weight). The structure of these CS-PVA hydrogels was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The hydrogel samples were also characterized for tensile strength, contact angle, swelling behavior, and degradation at physiological body temperature. Their physicochemical properties, biocompatibility, and cell viability when cultured with human dermal fibroblasts were assessed using alamarBlue and live/dead assays and compared to optimize their functionality. SEM analysis showed that the concentration and molecular weight of the chitosan component affected the pore size. Furthermore, the contact angle decreased with increasing chitosan content, indicating that chitosan increased its hydrophilic properties. The in vitro degradation study revealed a nonlinear time-dependent relationship between chitosan concentration or molecular weight, and the rate of degradation was affected by the pore size of the hydrogel. All of the CS-PVA hydrogels exhibited good cell proliferation, particularly with the high molecular weight chitosan samples.
Collapse
Affiliation(s)
- Ziyu Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nasif Mahmood
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Januka Budhathoki-Uprety
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Raleigh, North Carolina 27695, United States
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
- College of Textiles, Donghua University, Songjiang, Shanghai 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
8
|
Anaya-Sampayo LM, García-Robayo DA, Roa NS, Rodriguez-Lorenzo LM, Martínez-Cardozo C. Platelet-rich fibrin (PRF) modified nano-hydroxyapatite/chitosan/gelatin/alginate scaffolds increase adhesion and viability of human dental pulp stem cells (DPSC) and osteoblasts derived from DPSC. Int J Biol Macromol 2024; 273:133064. [PMID: 38866288 DOI: 10.1016/j.ijbiomac.2024.133064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 μm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.
Collapse
Affiliation(s)
| | | | - Nelly S Roa
- Dental Research Center, School of Dentistry, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis Maria Rodriguez-Lorenzo
- Department of Polymeric Nanomaterials and Biomaterials, Institute Science and Technology of Polymers (ICTP-CSIC), Madrid, Spain
| | | |
Collapse
|
9
|
Song Q, Bai J, Li J, Jia J, Xu X, Wang L, Liu X, Yang N, Duan X. Phosvitin-based hydrogels prepared in AmimCl under magnetic field treatment: Structural characteristics, biological functions, and application in skin wound healing. Int J Biol Macromol 2024; 259:129224. [PMID: 38185308 DOI: 10.1016/j.ijbiomac.2024.129224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Due to the serious bacterial infection of skin and the waste of petroleum-based materials, there is an urgent need to develop natural biodegradable wound dressings with high antibacterial activity. Phosvitin (PSV) has shown its natural antioxidant and antibacterial properties, making it an excellent material for preparing wound healing dressings. In this study, we investigated the effect of magnetic field on the preparation of PSV-Microcrystalline Cellulose (MCC) composite hydrogels in 1-Allyl-3-methylimidazolium chloride (AmimCl) system. The results showed that the prepared hydrogels exhibited homogeneous surface structure, suitable swelling capacity and elasticity modulus, and sufficient thermal stability. The excellent antibacterial and antioxidant activities of hydrogels were mainly resulting from AmimCl and PSV, respectively, and the properties were enhanced after magnetic field treatment. The proteomics analysis indicated that AmimCl can readily penetrate the biological membranes of Staphylococcus aureus (S. aureus), upsetting the metabolism and reducing the virulence. The hydrogels showed great blood compatibility. Compared with the commercial materials, the 5 mT-treated hydrogels presented a comparable wound healing rate in the full-thickness skin injury model. On day 7, the wound healing rate of the 5 mT group reached approximately 84.40 %, which was significantly higher than that of the control group, 72.88 % (P < 0.05). In conclusion, our work provides experience for the development of biodegradable materials combined in ionic liquids and magnetic field, and explores their applications in wound healing dressings.
Collapse
Affiliation(s)
- Qi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jiayu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
10
|
Lv X, Lv A, Xie T, Shao Z, Yin G, Li D, Xu L, Sun S. Enhanced Stability and Catalytic Activity of a Nanocatalyst with Reusable Ionic Liquid Hydrogels for the Reduction of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2210-2219. [PMID: 38215044 DOI: 10.1021/acs.langmuir.3c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Nitroaromatic compounds have a wide range of applications. However, they pose a significant threat to both the environment and human health. Ionic liquid hydrogels (ILs-gels) have emerged as a cost-effective and environmentally friendly option for various applications. However, conventional ILs-gels are known to possess mechanical flaws or defects. The procedure utilized a facile synthesis route that involved the polymerization of acrylamide (AM) and ionic liquids (ILs) to create a novel candidate for nanoparticle absorption. This study resolved this issue by creating toughened hydrophobic combined hydrogels synthesized through the addition of SiO2@poly(butyl acrylate) core-shell inorganic-organic hybrid latex particles (SiO2@PBA) to the AM-ILs mixture. The SiO2@PBA particles were chosen to provide the hydrogels with exceptional stretchability (up to 4050% strain) and high mechanical properties (tensile strength of 126 kPa) by acting as both a nanotoughener and a cross-linking point for hydrophobic linkage. Additionally, the P(AM/ILs)-SiO2@PBA hydrogel served as a template for the in situ and stable formation of palladium (Pd) nanoparticles. By incorporation of these Pd nanoparticles as catalysts into P(AM/ILs)-SiO2@PBA hydrogel carriers, the resulting P(AM/ILs)-SiO2@PBA/Pd hydrogels exhibited the ability to catalyze the degradation of p-nitrophenol. Remarkably, even after 15 applications, the efficiency of the degradation process remained consistently above 90%. Thus, the innovative SiO2@PBA toughened ILs-hydrogel design strategy can be utilized to develop robust and stretchable hydrogel materials for catalytic use in the sewage disposal industry.
Collapse
Affiliation(s)
- Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Aowei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ting Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Zhubao Shao
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Guangzhong Yin
- Francisco de Vitoria University (UFV), Ctra. M-515, Pozuelo-Majadahonda, Km. 1800 Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Da Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Liyang Xu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
11
|
Wang L, Wang K, Yang M, Yang X, Li D, Liu M, Niu C, Zhao W, Li W, Fu Q, Zhang K. Urethral Microenvironment Adapted Sodium Alginate/Gelatin/Reduced Graphene Oxide Biomimetic Patch Improves Scarless Urethral Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302574. [PMID: 37973550 PMCID: PMC10787096 DOI: 10.1002/advs.202302574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/17/2023] [Indexed: 11/19/2023]
Abstract
The nasty urine microenvironment (UME) is an inherent obstacle that hinders urethral repair due to fibrosis and swelling of the oftentimes adopted hydrogel-based biomaterials. Here, using reduced graphene oxide (rGO) along with double-freeze-drying to strengthen a 3D-printed patch is reported to realize scarless urethral repair. The sodium alginate/gelatin/reduced graphene oxide (SA/Gel/rGO) biomaterial features tunable stiffness, degradation profile, and anti-fibrosis performance. Interestingly, the 3D-printed alginate-containing composite scaffold is able to respond to Ca2+ present in the urine, leading to enhanced structural stability and strength as well as inhibiting swelling. The investigations present that the swelling behaviors, mechanical properties, and anti-fibrosis efficacy of the SA/Gel/rGO patch can be modulated by varying the concentration of rGO. In particular, rGO in optimal concentration shows excellent cell viability, migration, and proliferation. In-depth mechanistic studies reveal that the activation of cell proliferation and angiogenesis-related proteins, along with inhibition of fibrosis-related gene expressions, play an important role in scarless repair by the 3D-printed SA/Gel/rGO patch via promoting urothelium growth, accelerating angiogenesis, and minimizing fibrosis in vivo. The proposed strategy has the potential of resolving the dilemma of necessary biomaterial stiffness and unwanted fibrosis in urethral repair.
Collapse
Affiliation(s)
- Liyang Wang
- The Department of UrologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200233P. R. China
- School of Materials Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Kai Wang
- Clinical Research CenterShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| | - Ming Yang
- The Department of UrologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200233P. R. China
- Shanghai Eastern Institute of Urologic ReconstructionShanghai200000P. R. China
| | - Xi Yang
- Novaprint Therapeutics Suzhou Co., LtdSuzhou215000P. R. China
| | - Danyang Li
- The Department of UrologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200233P. R. China
- School of Materials Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Meng Liu
- The Department of UrologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200233P. R. China
- Shanghai Eastern Institute of Urologic ReconstructionShanghai200000P. R. China
| | - Changmei Niu
- Novaprint Therapeutics Suzhou Co., LtdSuzhou215000P. R. China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative MedicineWinston‐SalemNC27155USA
| | - Wenyao Li
- School of Materials Science and EngineeringShanghai University of Engineering ScienceShanghai201620P. R. China
| | - Qiang Fu
- The Department of UrologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200233P. R. China
- Shanghai Eastern Institute of Urologic ReconstructionShanghai200000P. R. China
| | - Kaile Zhang
- The Department of UrologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Jiao Tong UniversityShanghai200233P. R. China
- Shanghai Eastern Institute of Urologic ReconstructionShanghai200000P. R. China
| |
Collapse
|
12
|
Choudhary P, Ramalingam B, Das SK. Rational design of antimicrobial peptide conjugated graphene-silver nanoparticle loaded chitosan wound dressing. Int J Biol Macromol 2023; 246:125347. [PMID: 37336371 DOI: 10.1016/j.ijbiomac.2023.125347] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Wound dressing with poor antibacterial properties, the tendency to adhere to the wound site, poor mechanical strength, and lack of porosity and flexibility are the major cause of blood loss, delayed wound repair, and sometimes causes death during the trauma or injury. In such cases, hydrogel-based antibacterial wound dressing would be a boon to the existing dressing as the moist environment will maintain the cooling temperate and proper exchange of atmosphere around the wound. In the present study, the multifunctional graphene with silver and ε-Poly-l-lysine reinforced into the chitosan matrix (CGAPL) was prepared as a nanobiocomposite wound dressing. The contact angle measurement depicted the hydrophilic property of CGAPL nanobiocomposite dressing (water contact angle 42°), while the mechanical property was 78.9 MPa. The antibacterial and cell infiltration study showed the antimicrobial property of CGAPL nanobiocomposite wound dressing. It also demonstrated no cytotoxicity to the L929 fibroblast cells. Chorioallantoic Membrane (CAM) assay showed the pro-angiogenic potential of CGAPL nanobiocomposite wound dressing. In-vitro scratch wound assay confirmed the migration of cells and increased cell adhesion and proliferation within 18 h of culture on the surface of CGAPL nanobiocomposite dressing. Later, the in-vivo study in the Wistar rat model showed that CGAPL nanobiocomposite dressing significantly enhanced the wound healing process as compared to the commercially available wound dressing Tegaderm (p-value <0.01) and Fibroheal@Ag (p-value <0.005) and obtained complete wound closure in 14 days. Histology study further confirmed the complete healing process, re-epithelization, and thick epidermis tissue formation. The proposed CGAPL nanobiocomposite wound dressing thus offers a novel wound dressing material with an efficient and faster wound healing property.
Collapse
Affiliation(s)
- Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Department of Civil Engineering, Anna University, Chennai 600020, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.
| |
Collapse
|
13
|
Vaupel S, Mau R, Kara S, Seitz H, Kragl U, Meyer J. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured via digital light processing. J Mater Chem B 2023. [PMID: 37325953 DOI: 10.1039/d3tb00285c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hydrogels are three-dimensional hydrophilic polymeric networks absorbing up to and even more than 90 wt% of water. These superabsorbent polymers retain their shape during the swelling process while enlarging their volume and mass. In addition to their swelling behavior, hydrogels can possess other interesting properties, such as biocompatibility, good rheological behavior, or even antimicrobial activity. This versatility qualifies hydrogels for many medical applications, especially drug delivery systems. As recently shown, polyelectrolyte-based hydrogels offer beneficial properties for long-term and stimulus-responsive applications. However, the fabrication of complex structures and shapes can be difficult to achieve with common polymerization methods. This obstacle can be overcome by the use of additive manufacturing. 3D printing technology is gaining more and more attention as a method of producing materials for biomedical applications and medical devices. Photopolymerizing 3D printing methods offer superior resolution and high control of the photopolymerization process, allowing the fabrication of complex and customizable designs while being less wasteful. In this work, novel synthetic hydrogels, consisting of [2-(acryloyloxy) ethyl]trimethylammonium chloride (AETMA) as an electrolyte monomer and poly(ethylene glycol)-diacrylate (PEGDA) as a crosslinker, 3D printed via Digital Light Processing (DLP) using a layer height of 100 μm, are reported. The hydrogels obtained showed a high swelling degree q∞m,t ∼ 12 (24 h in PBS; pH 7; 37 °C) and adjustable mechanical properties with high stretchability (εmax ∼ 300%). Additionally, we embedded the model drug acetylsalicylic acid (ASA) and investigated its stimulus-responsive drug release behaviour in different release media. The stimulus responsiveness of the hydrogels is mirrored in their release behavior and could be exploited in triggered as well as sequential release studies, demonstrating a clear ion exchange behavior. The received 3D-printed drug depots could also be printed in complex hollow geometry, exemplarily demonstrated via an individualized frontal neo-ostium implant prototype. Consequently, a drug-releasing, flexible, and swellable material was obtained, combining the best of both worlds: the properties of hydrogels and the ability to print complex shapes.
Collapse
Affiliation(s)
- Sonja Vaupel
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Robert Mau
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Microfluidics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Selin Kara
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
| | - Hermann Seitz
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
- Microfluidics, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Udo Kragl
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Johanna Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167 Hannover, Germany.
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
14
|
Aswathy SH, NarendraKumar U, Manjubala I. The influence of molecular weight of cellulose on the properties of carboxylic acid crosslinked cellulose hydrogels for biomedical and environmental applications. Int J Biol Macromol 2023; 239:124282. [PMID: 37023878 DOI: 10.1016/j.ijbiomac.2023.124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
Hydrogels a three-dimensional network structure of hydrophilic polymers have gained significant interest in the field of biomedicine due to its high-water absorption properties and its resemblance to native extracellular matrix. However, the hydrogel's physicochemical properties are important in its ability to serve as a matrix in biomedical applications. The variations on the molecular weight of polymers on the preparation of crosslinked hydrogels may alter the properties. Different molecular weight carboxymethyl cellulose polymers were employed in this work to determine the effect of molecular weight on the physicochemical parameters of the hydrogel's crosslinking reaction. For this study, two distinct molecular weight carboxymethyl cellulose (CMC) polymers (Mw, 250,000 and 700,000) and various concentrations of crosslinker solution were used. The hydrogels were prepared through a chemical crosslinking reaction combining CMC and citric acid, which results in the formation of an ester bond between the two polymer chains. The crosslinking reaction is confirmed by Fourier transform infrared spectroscopy and total carboxyl content analysis. According to the physicochemical, thermal, and mechanical analysis, we have identified that 7 %, 9 % and 10 % citric acid showed the most promising hydrogels and found 7CMC hydrogel had superior quality. In vitro results demonstrated that the citric acid crosslinked CMC had excellent hemocompatibility and cytocompatibility.
Collapse
Affiliation(s)
- S H Aswathy
- Department of Biosciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - U NarendraKumar
- Department of Manufacturing Engineering, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - I Manjubala
- Department of Biosciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
15
|
Ozel C, Apaydin E, Sariboyaci AE, Tamayol A, Avci H. A multifunctional sateen woven dressings for treatment of skin injuries. Colloids Surf B Biointerfaces 2023; 224:113197. [PMID: 36822118 DOI: 10.1016/j.colsurfb.2023.113197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Cutaneous wounds with impaired healing such as diabetic ulcers and burns constitute major and rapidly growing threat to healthcare systems worldwide. Accelerating wound healing requires the delivery of biological factors that induce angiogenesis, support cellular proliferation, and modulate inflammation while minimizing infection. In this study, we engineered a dressing made by weaving of composite fibers (CFs) carrying mesenchymal stem cells (MSCs) and a model antibiotic using a scalable sateen textile technique. In this regard, two different sets of CFs carrying MSCs or an antimicrobial agent were used to generate a multifunctional dressing. According to cell viability and metabolic activity as CCK-8 and live/dead with qRT-PCR results, more than %90 the encapsulated MSCs remain viable for 28 days and their expression levels of the wound repair factors including ECM remodeling, angiogenesis and immunomodulatory maintained in MSCs post dressing manufacturing for 14 days. Post 10 days culture of the dressing, MSCs within CFs had 10-fold higher collagen synthesis (p < 0.0001) determined by hydroxyproline assay which indicates the enhanced healing properties. According to in vitro antimicrobial activity results determined by disk diffusion and broth microdilution tests, the first day and the total amount of release gentamicin loaded dressing samples during the 28 days were higher than determined minimal inhibition concentration (MIC) values for S. aureus and K. pneumonia without negatively impacting the viability and functionality of encapsulated MSCs within the dressing. The dressing is also flexible and can conform to skin curvatures making the dressing suitable for the treatment of different skin injuries such as burns and diabetic ulcers.
Collapse
Affiliation(s)
- Ceren Ozel
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Elif Apaydin
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Department of Biochemistry, Institute of Health Sciences, Anadolu University, Eskişehir 26470, Turkey
| | - Ayla Eker Sariboyaci
- Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06269, USA.
| | - Huseyin Avci
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, Eskisehir 26040, Turkey; Department of Metallurgical and Materials Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Turkey; Translational Medicine Research and Clinical Center (TATUM), Eskişehir Osmangazi University, Eskişehir 26040, Turkey.
| |
Collapse
|
16
|
Deng J, Cohen DJ, Sabalewski EL, Van Duyn C, Wilson DS, Schwartz Z, Boyan BD. Semaphorin 3A delivered by a rapidly polymerizing click hydrogel overcomes impaired implant osseointegration in a rat type 2 diabetes model. Acta Biomater 2023; 157:236-251. [PMID: 36435442 PMCID: PMC10007856 DOI: 10.1016/j.actbio.2022.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Semaphorin 3A (sema3A) is an osteoprotective factor that enhances bone formation while inhibiting osteoclast bone resorption. It is produced by rat calvarial osteoblasts cultured on grit-blasted/acid-etched microtextured (SLA) titanium surfaces at higher levels than on tissue culture polystyrene, suggesting that it may improve performance of titanium implants in vivo, particularly in conditions characterized by compromised bone quality. To test this, we established a clinically relevant type 2 diabetes mellitus (T2DM) rat model and used a non-toxic click hydrogel that rapidly polymerizes in situ (GEL) to provide localized controlled delivery of sema3A. In vitro studies confirmed that sema3A released from GEL was biologically active, increasing osteoblast differentiation of a pre-osteoblast cell-line. Whereas increased sema3A production was not observed in T2DM calvarial osteoblasts cultured on SLA, exogenous sema3A enhanced surface-induced osteoblast differentiation, indicating that it would be a viable candidate for in vivo use. Delivery of sema3A either by GEL or by local injection to bone defects enhanced osseointegration of SLA implants in the T2DM rats. Trabecular bone mass and bone-to-implant contact were decreased in T2DM rats compared to normal rats; sema3A delivered locally improved both parameters. These findings suggest that reduced trabecular bone contributes to poor osseointegration in T2DM patients and support GEL as a promising treatment option for sustained release of therapeutic doses of sema3A. Moreover, using this clinically translatable T2DM model and developing a biocompatible, Cu-free click chemistry hydrogel platform for the non-invasive delivery of therapeutics has major implications for regenerative medicine as a whole. STATEMENT OF SIGNIFICANCE: Osseointegration is compromised in patients with poor bone quality due to conditions like type 2 diabetes mellitus (T2DM). Previously, we showed that semaphorin 3A (sema3A) production is increased when human bone marrow stromal cells are cultured on titanium substrates that support osseointegration in vivo, suggesting it may enhance peri-implant osteogenesis in diabetes. Here we established a spontaneously developing T2DM rat model with clinical translatability and used it to assess sema3A effectiveness. Sema3A was delivered to the implant site via a novel copper-free click hydrogel, which has minimal swelling behavior and superior rheological properties. Osseointegration was successfully restored, and enhanced compared to burst release through injections. This study provides scientific evidence for using sema3A to treat impaired osseointegration in T2DM patients.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; VCU DaVinci Center for Innovation, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - Eleanor L Sabalewski
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - Christine Van Duyn
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA
| | - D Scott Wilson
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MA 21231, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
17
|
Liu S, Gao Y, Wang W, Wang X. Optical mapping of the evolution of water content during the swelling of hydrophilic polymers. Chem Commun (Camb) 2023; 59:599-602. [PMID: 36537229 DOI: 10.1039/d2cc05774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The water content of hydrophilic polymers is a fundamental property that regulates their performance. Herein, we report a new technique for optically imaging the water content of hydrophilic polymers both in static and dynamic evolution during swelling, based on mapping the interfacial refractive index of hydrophilic polymers with label-free total internal reflection microscopy.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yajing Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaoliang Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Guamba E, Vispo NS, Whitehead DC, Singh AK, Santos-Oliveira R, Niebieskikwiat D, Zamora-Ledezma C, Alexis F. Cellulose-based hydrogels towards an antibacterial wound dressing. Biomater Sci 2022; 11:3461-3468. [PMID: 36475559 DOI: 10.1039/d2bm01369j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydrogels are promising candidates for wound healing bandages because they can mimic the native skin microenvironment. Additionally, there is increasing growth in the use of naturally derived materials and plant-based biomaterials to produce healthcare products with healing purposes because of their biocompatibility and biodegradation properties. In this study, cellulose extracted from biodiverse sources in Ecuador was used as the raw material for the fabrication of hydrogels with enhanced antifouling properties. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the cellulose and hydrogels. In vitro and ex vivo tests were performed to evaluate the antimicrobial activity of hydrogels against Gram-negative bacteria as a model. Finally, the hydrogel synthesized with cellulose extracted from pitahaya showed improved antibacterial activity when applied over pigskin as a proof of concept for wound dressing. Therefore, the present results suggest that cellulose-based hydrogels are good candidates for application as wound dressings.
Collapse
Affiliation(s)
- Esteban Guamba
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Daniel C Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, 29634, USA
| | - Ajaya Kumar Singh
- Department of Chemistry, Government VYT PG Autonomous College Durg, Chhattisgarh-491001, India.,School of Chemistry & Physics, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, Brazil.,Zona Oeste State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, Brazil
| | - Dario Niebieskikwiat
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Departamento de Ingeniería Química, Quito, 170901, Ecuador.
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group, Faculty of Pharmacy and Nutrition, UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Departamento de Ingeniería Química, Quito, 170901, Ecuador.
| |
Collapse
|
19
|
Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing. Polymers (Basel) 2022; 14:polym14235121. [PMID: 36501514 PMCID: PMC9735564 DOI: 10.3390/polym14235121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Innovation in materials specially formulated for additive manufacturing is of great interest and can generate new opportunities for designing cost-effective smart materials for next-generation devices and engineering applications. Nevertheless, advanced molecular and nanostructured systems are frequently not possible to integrate into 3D printable materials, thus limiting their technological transferability. In some cases, this challenge can be overcome using polymeric macromolecules of ionic nature, such as polymeric ionic liquids (PILs). Due to their tuneability, wide variety in molecular composition, and macromolecular architecture, they show a remarkable ability to stabilize molecular and nanostructured materials. The technology resulting from 3D-printable PIL-based formulations represents an untapped array of potential applications, including optoelectronic, antimicrobial, catalysis, photoactive, conductive, and redox applications.
Collapse
|
20
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
21
|
Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity. Carbohydr Polym 2022; 291:119555. [DOI: 10.1016/j.carbpol.2022.119555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 01/30/2023]
|
22
|
Romischke J, Scherkus A, Saemann M, Krueger S, Bader R, Kragl U, Meyer J. Swelling and Mechanical Characterization of Polyelectrolyte Hydrogels as Potential Synthetic Cartilage Substitute Materials. Gels 2022; 8:gels8050296. [PMID: 35621594 PMCID: PMC9141488 DOI: 10.3390/gels8050296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Hydrogels have become an increasingly interesting topic in numerous fields of application. In addition to their use as immobilization matrixes in (bio)catalysis, they are widely used in the medical sector, e.g., in drug delivery systems, contact lenses, biosensors, electrodes, and tissue engineering. Cartilage tissue engineering hydrogels from natural origins, such as collagen, hyaluronic acid, and gelatin, are widely known for their good biocompatibility. However, they often lack stability, reproducibility, and mechanical strength. Synthetic hydrogels, on the other hand, can have the advantage of tunable swelling and mechanical properties, as well as good reproducibility and lower costs. In this study, we investigated the swelling and mechanical properties of synthetic polyelectrolyte hydrogels. The resulting characteristics such as swelling degree, stiffness, stress, as well as stress-relaxation and cyclic loading behavior, were compared to a commercially available biomaterial, the ChondroFiller® liquid, which is already used to treat articular cartilage lesions. Worth mentioning are the observed good reproducibility and high mechanical strength of the synthetic hydrogels. We managed to synthesize hydrogels with a wide range of compressive moduli from 2.5 ± 0.1 to 1708.7 ± 67.7 kPa, which addresses the span of human articular cartilage.
Collapse
Affiliation(s)
- Johanna Romischke
- Industrial Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; (J.R.); (A.S.); (U.K.)
| | - Anton Scherkus
- Industrial Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; (J.R.); (A.S.); (U.K.)
| | - Michael Saemann
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (S.K.); (R.B.)
| | - Simone Krueger
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (S.K.); (R.B.)
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, 18057 Rostock, Germany; (M.S.); (S.K.); (R.B.)
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Udo Kragl
- Industrial Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; (J.R.); (A.S.); (U.K.)
- Department Life, Light & Matter, Faculty for Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Johanna Meyer
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 3-9, 30167 Hannover, Germany
- Correspondence:
| |
Collapse
|
23
|
Liu C, Raza F, Qian H, Tian X. Recent advances in poly(ionic liquid)s for biomedical application. Biomater Sci 2022; 10:2524-2539. [PMID: 35411889 DOI: 10.1039/d2bm00046f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Poly(ionic liquid)s (PILs) are polymers containing ions in their side-chain or backbone, and the designability and outstanding physicochemical properties of PILs have attracted widespread attention from researchers. PILs have specific characteristics, including negligible vapor pressure, high thermal and chemical stability, non-flammability, and self-assembly capabilities. PILs can be well combined with advanced analytical instruments and technology and have made outstanding contributions to the development of biomedicine aiding in the continuous advancement of science and technology. Here we reviewed the advances of PILs in the biomedical field in the past five years with a focus on applications in proteomics, drug delivery, and development. This paper aims to engage pharmaceutical and biomedical scientists to full understand PILs and accelerate the progress from laboratory research to industrialization.
Collapse
Affiliation(s)
- Chunxia Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Road, Shanghai, 200240, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
24
|
Rekowska N, Huling J, Brietzke A, Arbeiter D, Eickner T, Konasch J, Riess A, Mau R, Seitz H, Grabow N, Teske M. Thermal, Mechanical and Biocompatibility Analyses of Photochemically Polymerized PEGDA 250 for Photopolymerization-Based Manufacturing Processes. Pharmaceutics 2022; 14:628. [PMID: 35336002 PMCID: PMC8951438 DOI: 10.3390/pharmaceutics14030628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Novel fabrication techniques based on photopolymerization enable the preparation of complex multi-material constructs for biomedical applications. This requires an understanding of the influence of the used reaction components on the properties of the generated copolymers. The identification of fundamental characteristics of these copolymers is necessary to evaluate their potential for biomaterial applications. Additionally, knowledge of the properties of the starting materials enables subsequent tailoring of the biomaterials to meet individual implantation needs. In our study, we have analyzed the biological, chemical, mechanical and thermal properties of photopolymerized poly(ethyleneglycol) diacrylate (PEGDA) and specific copolymers with different photoinitiator (PI) concentrations before and after applying a post treatment washing process. As comonomers, 1,3-butanediol diacrylate, pentaerythritol triacrylate and pentaerythritol tetraacrylate were used. The in vitro studies confirm the biocompatibility of all investigated copolymers. Uniaxial tensile tests show significantly lower tensile strength (82% decrease) and elongation at break (76% decrease) values for washed samples. Altered tensile strength is also observed for different PI concentrations: on average, 6.2 MPa for 1.25% PI and 3.1 MPa for 0.5% PI. The addition of comonomers lowers elongation at break on average by 45%. Moreover, our observations show glass transition temperatures (Tg) ranging from 27 °C to 56 °C, which significantly increase with higher comonomer content. These results confirm the ability to generate biocompatible PEGDA copolymers with specific thermal and mechanical properties. These can be considered as resins for various additive manufacturing-based applications to obtain personalized medical devices, such as drug delivery systems (DDS). Therefore, our study has advanced the understanding of PEGDA multi-materials and will contribute to the future development of tools ensuring safe and effective individual therapy for patients.
Collapse
Affiliation(s)
- Natalia Rekowska
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Jennifer Huling
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Andreas Brietzke
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Daniela Arbeiter
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Thomas Eickner
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| | - Jan Konasch
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Alexander Riess
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Robert Mau
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
| | - Hermann Seitz
- Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany; (J.K.); (A.R.); (R.M.); (H.S.)
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
- Department LL&M, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - Michael Teske
- Institute for Biomedical Engineering, University Medical Center Rostock, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany; (J.H.); (A.B.); (D.A.); (T.E.); (N.G.); (M.T.)
| |
Collapse
|
25
|
Correia DM, Fernandes LC, Fernandes MM, Hermenegildo B, Meira RM, Ribeiro C, Ribeiro S, Reguera J, Lanceros-Méndez S. Ionic Liquid-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2401. [PMID: 34578716 PMCID: PMC8471968 DOI: 10.3390/nano11092401] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area. This review focus on recent advances concerning the role of ILs in the development of biomaterials and their combination with natural and synthetic polymers for different biomedical areas, including drug delivery, cancer therapy, tissue engineering, antimicrobial and antifungal agents, and biosensing.
Collapse
Affiliation(s)
- Daniela Maria Correia
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Liliana Correia Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
| | - Margarida Macedo Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Rafaela Marques Meira
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sylvie Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
26
|
Somasekhar L, Huynh ND, Vecheck A, Kishore V, Bashur CA, Mitra K. Three-dimensional printing of cell-laden microporous constructs using blended bioinks. J Biomed Mater Res A 2021; 110:535-546. [PMID: 34486214 DOI: 10.1002/jbm.a.37303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/08/2022]
Abstract
Hydrogels such as alginate and gelatin have shown potential as biomaterials in various three-dimensional (3D) bioprinting applications. However, parameters such as viscosity, porosity, and printability influence the performance of hydrogel-based biomaterials, and there are limited characterization studies conducted on the behavior of these constructs. In this work, a syringe-based extrusion bioprinter was used to print 3D constructs with bioink composed of various concentrations of alginate and gelatin along with fibrinogen and human umbilical vein endothelial cells. Instead of crosslinking the gelatin, the gelatin was left uncrosslinked to provide microporosity within the system that can impact the cellular response. Mechanical and biochemical characterization was performed to evaluate the structural stability and integrity of the printed constructs along with viability of embedded cells. Bioprinted constructs of a higher total concentration of alginate and gelatin yielded better stability and structural integrity after culture. More importantly, higher amounts of gelatin (i.e., 1:9 instead of 2:3 alginate:gelatin) were shown to improve printability, which is different than most studies that instead use alginate to improve printability. In addition, higher amounts of gelatin impacted the changes in surface morphological features of the constructs after incubation, and ultimately improved biocompatibility with our system. Overall, this study demonstrated that an uncrosslinked gelatin system can provide flexible printing parameters and surface morphologies, but careful control over the printing parameters may be required. The bioink concentration of 10% (w/v) with minimum alginate and higher gelatin concentration exhibited the best printability, cell survival, and viability.
Collapse
Affiliation(s)
- Likitha Somasekhar
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
| | - Nicholas D Huynh
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
| | - Amy Vecheck
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
| | - Vipuil Kishore
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
| | - Chris A Bashur
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kunal Mitra
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida, USA
| |
Collapse
|
27
|
Shen P, Jiao Y. WITHDRAWN: Epicatechin gallate-loaded calcium alginate sponges promote diabetic wound healing through protecting against oxidative stress and modulation of immune response via PI3K/AKT/NFκB signaling pathway. Int J Biol Macromol 2021:S0141-8130(21)01437-9. [PMID: 34229022 DOI: 10.1016/j.ijbiomac.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Peng Shen
- Northern Beijing Medical District, Chinese PLA General Hospital, Beijing 100094, China
| | - Yang Jiao
- Department of Stomatology, the 7th Medical Center, Chinese PLA General Hospital, Beijing 100700, China.
| |
Collapse
|
28
|
Apte G, Lindenbauer A, Schemberg J, Rothe H, Nguyen TH. Controlling Surface-Induced Platelet Activation by Agarose and Gelatin-Based Hydrogel Films. ACS OMEGA 2021; 6:10963-10974. [PMID: 34056249 PMCID: PMC8153948 DOI: 10.1021/acsomega.1c00764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 05/31/2023]
Abstract
Platelet-surface interaction is of paramount importance in biomedical applications as well as in vitro studies. However, controlling platelet-surface activation is challenging and still requires more effort as they activate immediately when contacting with any nonphysiological surface. As hydrogels are highly biocompatible, in this study, we developed agarose and gelatin-based hydrogel films to inhibit platelet-surface adhesion. We found promising agarose films that exhibit higher surface wettability, better controlled-swelling properties, and greater stiffness compared to gelatin, resulting in a strong reduction of platelet adhesion. Mechanical properties and surface wettability of the hydrogel films were varied by adding magnetite (Fe3O4) nanoparticles. While all of the films prevented platelet spreading, films formed by agarose and its nanocomposite repelled platelets and inhibited platelet adhesion and activation stronger than those of gelatin. Our results showed that platelet-surface activation is modulated by controlling the properties of the films underneath platelets and that the bioinert agarose can be potentially translated to the development of platelet storage and other medical applications.
Collapse
Affiliation(s)
- Gurunath Apte
- Junior
Research Group, Department of Bioprocess Technique,
and Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement
Techniques (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany
| | - Annerose Lindenbauer
- Junior
Research Group, Department of Bioprocess Technique,
and Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement
Techniques (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany
| | - Jörg Schemberg
- Junior
Research Group, Department of Bioprocess Technique,
and Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement
Techniques (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany
| | - Holger Rothe
- Junior
Research Group, Department of Bioprocess Technique,
and Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement
Techniques (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany
| | - Thi-Huong Nguyen
- Junior
Research Group, Department of Bioprocess Technique,
and Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement
Techniques (iba), Rosenhof, 37308 Heilbad Heiligenstadt, Germany
| |
Collapse
|
29
|
Liu X, Chen B, Li Y, Kong Y, Gao M, Zhang LZ, Gu N. Development of an electrospun polycaprolactone/silk scaffold for potential vascular tissue engineering applications. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520973244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Long-distance (⩾10 mm) arterial vascular defect injury was a massive challenge affecting human health. Compared with autologous transplantation, tissue-engineered scaffolds such as biocompatible silk fibroin (SF) scaffolds have been developed because they exhibit equivalent functional repair effects without adverse reactions. However, its mechanical strength and structural stability needed to be further improved to match the longer repair cycle of blood vessels while maintaining the original biological safety. Hence, we designed and prepared SF and hydrophobic polycaprolactone (PCL) composite microfibers by an improving electrospinning method. It was found that when the weight ratio of PCL to SF was 1: 1, a microfiber scaffold with high strength (6.16 N) and minimum degradability can be obtained. More importantly, compared with natural silk fibroin, the novel composite microfiber scaffolds can slightly inhibit cell infiltration and inflammation through co-culture with HUVECs in vitro and rabbit back transplantation in vivo. Furthermore, the fabricated scaffolds also demonstrated excellent structural stability in vivo because of the well-organized PCL doping in the structure. All these results indicated that the novel PCL/SF composite microfiber scaffolds were promising candidates for vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Bioeletronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, Jiangsu, P. R. China
| | - Yan Li
- State Key Laboratory of Bioeletronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, P. R. China
| | - Yan Kong
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, P. R. China
| | - Ming Gao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, P. R. China
| | - Lu Zhong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioeletronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science & Medical Engineering, Southeast University, Nanjing, P. R. China
| |
Collapse
|
30
|
Claus J, Jastram A, Piktel E, Bucki R, Janmey PA, Kragl U. Polymerized ionic l
iquids‐based
hydrogels with intrinsic antibacterial activity: Modern weapons against a
ntibiotic‐resistant
infections. J Appl Polym Sci 2020. [DOI: 10.1002/app.50222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Johanna Claus
- Department Life, Light & Matter, Faculty for Interdisciplinary Research University of Rostock Rostock Germany
- Institute of Chemistry Industrial Chemistry, University of Rostock Rostock Germany
| | - Ann Jastram
- Institute of Chemistry Industrial Chemistry, University of Rostock Rostock Germany
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering Medical University of Bialystok Bialystok Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering Medical University of Bialystok Bialystok Poland
- Institute for Medicine and Engineering University of Pennsylvania Philadelphia Pennsylvania USA
| | - Paul A. Janmey
- Institute for Medicine and Engineering University of Pennsylvania Philadelphia Pennsylvania USA
| | - Udo Kragl
- Department Life, Light & Matter, Faculty for Interdisciplinary Research University of Rostock Rostock Germany
- Institute of Chemistry Industrial Chemistry, University of Rostock Rostock Germany
| |
Collapse
|
31
|
Sommer FO, Appelt JS, Barke I, Speller S, Kragl U. UV-Polymerized Vinylimidazolium Ionic Liquids for Permselective Membranes. MEMBRANES 2020; 10:E308. [PMID: 33126526 PMCID: PMC7692284 DOI: 10.3390/membranes10110308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022]
Abstract
Ionic liquids are highly charged compounds with increasing applications in material science. A universal approach to synthesize free-standing, vinylalkylimidazolium bromide-containing membranes with an adjustable thickness is presented. By the variation of alkyl side chains, membrane characteristics such as flux and mechanical properties can be adjusted. The simultaneous use of different ionic liquids (ILs) in the synthesis can also improve the membrane properties. In separation application, these charged materials allowed us to retain charged sugars, such as calcium gluconate, by up to 95%, while similar neutral compounds such as glucose passed the membrane. An analysis of the surface conditions using atomic force microscopy (AFM) confirmed the experimental data and explains the decreasing permeance and increased retention of the charged sugars.
Collapse
Affiliation(s)
- Fridolin O. Sommer
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany; (F.O.S.); (I.B.); (S.S.)
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany;
| | - Jana-Sophie Appelt
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany;
| | - Ingo Barke
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany; (F.O.S.); (I.B.); (S.S.)
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Sylvia Speller
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany; (F.O.S.); (I.B.); (S.S.)
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | - Udo Kragl
- Faculty of Interdisciplinary Research, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany; (F.O.S.); (I.B.); (S.S.)
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany;
| |
Collapse
|
32
|
Zinc-based particle with ionic liquid as a hybrid filler for dental adhesive resin. J Dent 2020; 102:103477. [PMID: 32950630 DOI: 10.1016/j.jdent.2020.103477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of a zinc-based particle with ionic liquid as filler for an experimental adhesive resin. METHODS The ionic liquid 1-n-butyl-3-methylimidazolium chloride (BMI.Cl) and zinc chloride (ZnCl2) were used to synthesize 1-n-butyl-3-methylimidazolium trichlorozincate (BMI.ZnCl3), which was hydrolyzed under basic conditions to produce the simonkolleite (SKT) particles. SKT was analyzed by scanning electron microscopy and transmission electron microscopy. An experimental adhesive resin was formulated and SKT was incorporated at 1, 2.5, or 5 wt.% in the adhesive. One group without SKT was a control group. The antibacterial activity against Streptococcus mutans, cytotoxicity, degree of conversion (DC), ultimate tensile strength (UTS), softening in solvent, and microtensile bond strength (μ-TBS) were investigated. RESULTS SKT prepared from the ionic liquid BMI.ZnCl3 presented a hexagonal shape in the micrometer scale. SKT addition provided antibacterial activity against biofilm formation of S.mutans and planktonic bacteria (p < 0.05). There were no differences in pulp cells' viability (p > 0.05). The DC ranged from 62.18 (±0.83)% for control group to 64.44 (±1.55)% for 2.5 wt.% (p > 0.05). There was no statistically significant difference among groups for UTS (p > 0.05), softening in solvent (p > 0.05), and 24 h or 6 months μ-TBS (p > 0.05). CONCLUSIONS The physicochemical properties of adhesives were not affected by SKT incorporation, and the filler provided antibacterial activity against S. mutans without changes in the pulp cells' viability. This hybrid zinc-based particle with ionic liquid coating may be a promising filler to improve dental restorations. CLINICAL RELEVANCE A filler based on a zinc-derived material coated with ionic liquid was synthesized and added in dental adhesives, showing antibacterial activity and maintaining the other properties analyzed. SKT may be a promising filler to decrease the biofilm formation around resin-based restorative materials.
Collapse
|
33
|
Claus J, Eickner T, Grabow N, Kragl U, Oschatz S. Ion Exchange Controlled Drug Release from Polymerized Ionic Liquids. Macromol Biosci 2020; 20:e2000152. [PMID: 32686889 DOI: 10.1002/mabi.202000152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Indexed: 12/12/2022]
Abstract
In this work ion functionalized hydrogels as potent drug delivery systems are presented. The ion functionalization of the hydrogel enables the retention of ionic drug molecules and thus a reduction of burst release effects. Timolol maleate in combination with polymerized anionic 3-sulfopropylmethacrylate potassium and ibuprofen combined with cationic poly-[2-(methacryloyloxy)ethyl] trimethylammonium chloride are investigated in respect to their drug release profile. The results are showing an ion exchange depending release behavior instead of a diffusion-controlled drug release as it is known from common drug delivery systems. Furthermore, the suitability of such hydrogels for standard methods for sterilization is investigated.
Collapse
Affiliation(s)
- Johanna Claus
- Department of Chemistry, Industrial and Applied Chemistry, University of Rostock, Albert-Einstein-Str. 3A, Rostock, 18059, Germany.,Department Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 25, Rostock, 18059, Germany
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, Rostock, 18119, Germany
| | - Niels Grabow
- Department Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 25, Rostock, 18059, Germany.,Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, Rostock, 18119, Germany
| | - Udo Kragl
- Department of Chemistry, Industrial and Applied Chemistry, University of Rostock, Albert-Einstein-Str. 3A, Rostock, 18059, Germany.,Department Life, Light and Matter, University of Rostock, Albert-Einstein-Straße 25, Rostock, 18059, Germany
| | - Stefan Oschatz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friedrich-Barnewitz-Straße 4, Rostock, 18119, Germany
| |
Collapse
|