1
|
Bolton EM, Drackley A, Williams AL, Bohnsack BL. Insights into CYP1B1-Related Ocular Diseases Through Genetics and Animal Studies. Life (Basel) 2025; 15:395. [PMID: 40141740 PMCID: PMC11943492 DOI: 10.3390/life15030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
The CYP1B1 gene encodes a cytochrome p450 monooxygenase enzyme, and over 150 variants have been associated with a spectrum of eye diseases, including primary congenital glaucoma, anterior segment dysgenesis, juvenile open-angle glaucoma, and primary open-angle glaucoma. Clinical genetics has yielded insights into the functions of the various CYP1B1 gene domains; however, animal studies are required to investigate the molecular role of CYP1B1 in the eye. While both zebrafish and mice express CYP1B1 in the developing eye, embryonic studies have shown disparate species-specific functions. In zebrafish, CYP1B1 regulates ocular fissure closure such that overexpression causes a remarkable phenotype consisting of the absence of the posterior eye wall. Adult CYP1B1 null zebrafish lack an ocular phenotype but show mild craniofacial abnormalities. In contrast, CYP1B1-/- mice display post-natal mild to severe trabecular meshwork degeneration due to increased oxidative stress damage. Interestingly, the retinal ganglion cells in CYP1B1 null mice may be more susceptible to damage secondary to increased intraocular pressure. Future studies, including detailed genotype-phenotype information and animal work elucidating the regulation, substrates, and downstream effects of CYP1B1, will yield important insights for developing molecularly targeted therapies that will aim to prevent vision loss in CYP1B1-related eye diseases.
Collapse
Affiliation(s)
- Elizabeth M. Bolton
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; (E.M.B.); (A.L.W.)
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Andy Drackley
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
| | - Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; (E.M.B.); (A.L.W.)
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA; (E.M.B.); (A.L.W.)
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Castel N, Vitkin E, Shabo S, Berl A, Wise J, Duenyas A, Cohen EMA, Golberg A, Shalom A. Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues. Life (Basel) 2024; 14:1308. [PMID: 39459608 PMCID: PMC11509502 DOI: 10.3390/life14101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Differences between orbital and subcutaneous abdominal fat in the same patient have been noted but not formally investigated, previously. The objective of this research was to compare the differential expression of protein profiles in subcutaneous abdominal and orbital adipose tissues. In this cross-sectional, observational study, orbital fat tissue was sampled from 10 patients who underwent blepharoplasty and agreed to provide a small sample of subcutaneous abdominal fat. Shotgun mass spectrometry was performed on the extracted proteome. Data were analyzed using protein appearance patterns, differential expression and statistical enrichment. Protein analysis revealed significant differences in proteomics and differential expression between the orbital and subcutaneous abdominal adipose tissues, which presented five proteins that were uniquely expressed in the orbital fat and 18 in the subcutaneous abdominal fat. Gene Ontology analysis identified significantly different cellular processes and components related to the extracellular matrix or basement membrane components. This analysis shows the differences between orbital and subcutaneous abdominal fat found in proteomics differential expression, uniquely expressed proteins, and cellular processes. Further research is needed to correlate specific proteins and cellular processes to the mechanism of fat accumulation and obesity.
Collapse
Affiliation(s)
- Noam Castel
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava 4428164, Israel (A.B.)
| | - Edward Vitkin
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 6997801, Israel (E.M.A.C.)
| | - Sharon Shabo
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava 4428164, Israel (A.B.)
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava 4428164, Israel (A.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Julia Wise
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 6997801, Israel (E.M.A.C.)
| | - Amir Duenyas
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 6997801, Israel (E.M.A.C.)
| | - Eliyahu Michael Aharon Cohen
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 6997801, Israel (E.M.A.C.)
| | - Alexander Golberg
- Department of Environmental Studies, Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv 6997801, Israel (E.M.A.C.)
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Sava 4428164, Israel (A.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Wang W, Yang T, Chen S, Liang L, Wang Y, Ding Y, Xiong W, Ye X, Guo Y, Shen S, Chen H, Chen J. Tissue engineering RPE sheet derived from hiPSC-RPE cell spheroids supplemented with Y-27632 and RepSox. J Biol Eng 2024; 18:7. [PMID: 38229139 DOI: 10.1186/s13036-024-00405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Retinal pigment epithelium (RPE) cell therapy is a promising way to treat many retinal diseases. However, obtaining transplantable RPE cells is time-consuming and less effective. This study aimed to develop novel strategies for generating engineered RPE patches with physiological characteristics. RESULTS Our findings revealed that RPE cells derived from human induced pluripotent stem cells (hiPSCs) successfully self-assembled into spheroids. The RPE spheroids treated with Y27632 and Repsox had increased expression of epithelial markers and RPE-specific genes, along with improved cell viability and barrier function. Transcriptome analysis indicated enhanced cell adhesion and extracellular matrix (ECM) organization in RPE spheroids. These RPE spheroids could be seeded and bioprinted on collagen vitrigel (CV) membranes to construct engineered RPE sheets. Circular RPE patches, obtained by trephining a specific section of the RPE sheet, exhibited abundant microvilli and pigment particles, as well as reduced proliferative capacity and enhanced maturation. CONCLUSIONS Our study suggests that the supplementation of small molecules and 3D spheroid culture, as well as the bioprinting technique, can be effective methods to promote RPE cultivation and construct engineered RPE sheets, which may support future clinical RPE cell therapy and the development of RPE models for research applications.
Collapse
Grants
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
- NSFC-RGC, 32061160469, N_CUHK432/20 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Wenxuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Tingting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Sihui Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Liying Liang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yingxin Wang
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yin Ding
- The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Wei Xiong
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Xiuhong Ye
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shuhao Shen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Hang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China.
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China.
- Aier Eye Institute, Changsha, Hunan, China.
| |
Collapse
|
4
|
Zhou M, Wang K, Jin Y, Liu J, Wang Y, Xue Y, Liu H, Chen Q, Cao Z, Jia X, Rui Y. Explore novel molecular mechanisms of FNDC5 in ischemia-reperfusion (I/R) injury by analyzing transcriptome changes in mouse model of skeletal muscle I/R injury with FNDC5 knockout. Cell Signal 2024; 113:110959. [PMID: 37918465 DOI: 10.1016/j.cellsig.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Irisin, a myokine derived from proteolytic cleavage of the fibronectin type III domain-containing protein 5 (FNDC5) protein, is crucial in protecting tissues and organs from ischemia-reperfusion (I/R) injury. However, the underlying mechanism of its action remains elusive. In this study, we investigated the expression patterns of genes associated with FNDC5 knockout to gain insights into its molecular functions. METHODS We employed a mouse model of skeletal muscle I/R injury with FNDC5 knockout to examine the transcriptional profiles using RNA sequencing. Differentially expressed genes (DEGs) were identified and subjected to further analyses, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network analysis, and miRNA-transcription factor network analysis. The bioinformatics findings were validated using qRT-PCR and Western blotting. RESULTS Comparative analysis of skeletal muscle transcriptomes between wild-type (WT; C57BL/6), WT-I/R, FNDC5 knockout (KO), and KO-I/R mice highlighted the significance of FNDC5 in both physiological conditions and I/R injury. Through PPI network analysis, we identified seven key genes (Col6a2, Acta2, Col4a5, Fap, Enpep, Mmp11, and Fosl1), which facilitated the construction of a TF-hub genes-miRNA regulatory network. Additionally, our results suggested that the PI3K-Akt pathway is predominantly involved in FNDC5 deletion-mediated I/R injury in skeletal muscle. Animal studies revealed reduced FNDC5 expression in skeletal muscle following I/R injury, and the gastrocnemius muscle with FNDC5 knockout exhibited larger infarct size and more severe tissue damage after I/R. Moreover, Western blot analysis confirmed the upregulation of Col6a2, Enpep, and Mmp11 protein levels following I/R, particularly in the KO-I/R group. Furthermore, FNDC5 deletion inhibited the PI3K-Akt signaling pathway. CONCLUSION This study demonstrates that FNDC5 deletion exacerbates skeletal muscle I/R injury, potentially involving the upregulation of Col6a2, Enpep, and Mmp11. Additionally, the findings suggest the involvement of the PI3K-Akt pathway in FNDC5 deletion-mediated skeletal muscle I/R injury, providing novel insights into the molecular mechanisms underlying FNDC5's role in this pathological process.
Collapse
Affiliation(s)
- Ming Zhou
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Jinquan Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Hao Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Qun Chen
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhihai Cao
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Emergency, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Xueyuan Jia
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yongjun Rui
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| |
Collapse
|
5
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
6
|
Pereira BJA, Marcondes Lerario A, Sola PR, Laurentino TDS, Mohan DR, de Almeida AN, Pires de Aguiar PH, da Silva Paiva W, Wakamatsu A, Teixeira MJ, Oba-Shinjo SM, Marie SKN. Impact of a cell cycle and an extracellular matrix remodeling transcriptional signature on tumor progression and correlation with EZH2 expression in meningioma. J Neurosurg 2023; 138:649-662. [PMID: 36029259 DOI: 10.3171/2022.7.jns22953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors searched for genetic and transcriptional signatures associated with tumor progression and recurrence in their cohort of patients with meningiomas, combining the analysis of targeted exome, NF2-LOH, transcriptome, and protein expressions. METHODS The authors included 91 patients who underwent resection of intracranial meningioma at their institution between June 2000 and November 2007. The search of somatic mutations was performed by Next Generation Sequencing through a customized panel and multiplex ligation-dependent probe amplification for NF2 loss of heterozygosity. The transcriptomic profile was analyzed by QuantSeq 3' mRNA-Seq. The differentially expressed genes of interest were validated at the protein level analysis by immunohistochemistry. RESULTS The transcriptomic analysis identified an upregulated set of genes related to metabolism and cell cycle and downregulated genes related to immune response and extracellular matrix remodeling in grade 2 (atypical) meningiomas, with a significant difference in recurrent compared with nonrecurrent cases. EZH2 nuclear positivity associated with grade 2, particularly with recurrent tumors and EZH2 gene expression level, correlated positively with the expression of genes related to cell cycle and negatively to genes related to immune response and regulation of cell motility. CONCLUSIONS The authors identified modules of dysregulated genes in grade 2 meningiomas related to the activation of oxidative metabolism, cell division, cell motility due to extracellular remodeling, and immune evasion that were predictive of survival and exhibited significant correlations with EZH2 expression.
Collapse
Affiliation(s)
| | - Antonio Marcondes Lerario
- 2Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Paula Rodrigues Sola
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Talita de Sousa Laurentino
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Dipika R Mohan
- 3Medical Scientist Training Program, and Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Paulo Henrique Pires de Aguiar
- 5Medical Research ABC Medical School, Santo André, Brazil.,6Pontifice Catholic University of São Paulo, Sorocaba, Brazil; and
| | | | - Alda Wakamatsu
- 7Department of Pathology, Hepatic Pathology Laboratory, University of São Paulo, São Paulo, Brazil
| | | | - Sueli Mieko Oba-Shinjo
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- 1Department of Neurology, Laboratory of Molecular and Cellular Biology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Calero-Dueñas N, Mateos-Olivares M, Ussa F, Juberías JR, Marcos M, Pastor-Idoate S, Usategui-Martín R. Polymorphisms in CYP1B1 gene and the risk of suffering Primary Open-Angle Glaucoma: Systematic review and meta-analysis. Eur J Ophthalmol 2022; 32:1841-1849. [PMID: 35138193 DOI: 10.1177/11206721221077621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE It had been reported that mutations in CYP1B1 gene probably play an important role in the pathogenesis of primary open angle glaucoma (POAG) but the existing genetic association studies show contradictory results. Thus, the objective of our study was to perform a systematic review and meta-analysis to characterize more precisely the potential association between given polymorphisms in CYP1B1 gene and the risk of suffering POAG. METHODS A systematic review of studies that related the risk of carrying CYP1B1 gene polymorphisms with POAG development was conducted. We selected 19 case-control studies including 3855 POAG patients and 4125 control subjects in our meta-analyses. A random effects model was used. Sensitivity analysis and assessment of bias were also included. RESULTS The prevalence of CYP1B1 gene polymorphisms were significantly more frequent among POAG patients compared to all controls (OR = 2.91, 95% CI = 1.37 - 6.21; P = 0.006). Moreover, their prevalence was significantly higher in juvenile-onset patients than in adult-onset ones (OR = 2.27, 95% CI = 1.20-4.28; P = 0.001). CONCLUSION The results of this meta-analysis uphold that being a carrier of polymorphic genetic variants in CYP1B1 gene would increase the risk of POAG, especially the juvenile onset.
Collapse
Affiliation(s)
| | - Milagros Mateos-Olivares
- Departament of Ophthalmology, 16238Hospital Universitario de Valladolid, Valladolid, Spain
- 537068Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
| | - Fernando Ussa
- 537068Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Department of Ophthalmology, 156705The James Cook University Hospital, Middlesbrough, UK
| | - José R Juberías
- Departament of Ophthalmology, 16238Hospital Universitario de Valladolid, Valladolid, Spain
- 537068Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca-IBSAL; 37479University of Salamanca, Salamanca, Spain
| | - Salvador Pastor-Idoate
- Departament of Ophthalmology, 16238Hospital Universitario de Valladolid, Valladolid, Spain
- 537068Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, Madrid, Spain
| | - Ricardo Usategui-Martín
- 537068Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, Madrid, Spain
- Department of Cell Biology, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| |
Collapse
|
8
|
Investigating the Mechanisms of Pollen Typhae in the Treatment of Diabetic Retinopathy Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5728408. [PMID: 35024051 PMCID: PMC8747905 DOI: 10.1155/2022/5728408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. METHODS Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. RESULTS A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. CONCLUSION The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.
Collapse
|
9
|
Gong K, Zhou H, Liu H, Xie T, Luo Y, Guo H, Chen J, Tan Z, Yang Y, Xie L. Identification and Integrate Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer Based on Bioinformatics Analysis. Technol Cancer Res Treat 2021; 20:15330338211060202. [PMID: 34825846 PMCID: PMC8649439 DOI: 10.1177/15330338211060202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is the most common
type of lung cancer affecting humans. However, appropriate biomarkers for
diagnosis and prognosis have not yet been established. Here, we evaluated the
gene expression profiles of patients with NSCLC to identify novel biomarkers.
Methods: Three datasets were downloaded from the Gene
Expression Omnibus (GEO) database, and differentially expressed genes were
analyzed. Venn diagram software was applied to screen differentially expressed
genes, and gene ontology functional analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed. Cytoscape was used to analyze
protein-protein interactions (PPI) and Kaplan–Meier Plotter was used to evaluate
the survival rates. Oncomine database, Gene Expression Profiling Interactive
Analysis (GEPIA), and The Human Protein Atlas (THPA) were used to analyze
protein expression. Quantitative real-time polymerase (qPCR) chain reaction was
used to verify gene expression. Results: We identified 595
differentially expressed genes shared by the three datasets. The PPI network of
these differentially expressed genes had 202 nodes and 743 edges. Survival
analysis identified 10 hub genes with the highest connectivity, 9 of which
(CDC20, CCNB2, BUB1,
CCNB1, CCNA2, KIF11,
TOP2A, NDC80, and ASPM)
were related to poor overall survival in patients with NSCLC. In cell
experiments, CCNB1, CCNB2,
CCNA2, and TOP2A expression levels were
upregulated, and among different types of NSCLC, these four genes showed highest
expression in large cell lung cancer. The highest prognostic value was detected
for patients who had successfully undergone surgery and for those who had not
received chemotherapy. Notably, CCNB1 and
CCNA2 showed good prognostic value for patients who had not
received radiotherapy. Conclusion: CCNB1,
CCNB2, CCNA2, and TOP2A
expression levels were upregulated in patients with NSCLC. These genes may be
meaningful diagnostic biomarkers and could facilitate the development of
targeted therapies.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Haidan Liu
- The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China
| | - Ting Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Hui Guo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Jinlan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Zhiping Tan
- The Clinical Center for Gene Diagnosis and Therapy of The State Key Laboratory of Medical Genetics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, Hunan, PR China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, PR China
| |
Collapse
|
10
|
Cheng Z, Wylie A, Ferris C, Ingvartsen KL, Wathes DC. Effect of diet and nonesterified fatty acid levels on global transcriptomic profiles in circulating peripheral blood mononuclear cells in early lactation dairy cows. J Dairy Sci 2021; 104:10059-10075. [PMID: 34147225 DOI: 10.3168/jds.2021-20136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
After calving, lipid mobilization caused by increased nutrient demands for lactation leads to elevated circulating concentrations of nonesterified fatty acids (NEFA). Excessive NEFA levels have previously been identified as a major risk factor for postpartum immunosuppression. The aim of this study was to investigate changes in global transcriptomic gene expression of peripheral blood mononuclear cells (PBMC) in dairy cows offered different early lactation diets (high concentrate, n = 7; medium, n = 8; or low, n = 9) and with differing circulating levels of NEFA. Cows were classified as having NEFA concentrations of either <500 µM (low, n = 6), 500 to 750 µM (medium, n = 8) or >750 µM (high, n = 10) at 14 d in milk. Plasma urea concentrations were greater for cows on the high concentrate diet but β-hydroxybutyrate and glucose concentrations did not differ significantly between either dietary treatments or NEFA groups. Cows with high NEFA weighed more at drying off and suffered greater body condition score loss after calving. The PBMC were isolated at 14 d in milk, and RNA was extracted for RNA sequencing. Differential gene expression was analyzed with DESeq2 with q-value for false discovery rate control followed by Gene Ontology Enrichment. Although there were no differentially expressed genes associated with lactation diet, 304 differentially expressed genes were identified between cows with high and low circulating NEFA, with 118 upregulated and 186 downregulated. Gene Ontology enrichment analysis demonstrated that biological adhesion and immune system process were foremost among various PBMC functions which were altered relating to body defenses and immunity. High NEFA concentrations were associated with inhibited cellular adhesion function by downregulating 20 out of 26 genes (by up to 17-fold) related to this process. Medium NEFA concentrations altered a similar set of functions as high NEFA, but with smaller enrichment scores. Localization and immune system process were most significant, with biological adhesion ranking only eleventh. Our results demonstrated that increased circulating NEFA concentrations, but not diet, were associated with immune system processes in PBMC in early lactation cows. Leukocyte cell-to-cell adhesion was inhibited when the NEFA concentration exceeded 750 µM, which would reduce the efficiency of diapedesis and so contribute to decreased body defense mechanisms and predispose animals to infection.
Collapse
Affiliation(s)
- Z Cheng
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom.
| | - A Wylie
- Agri-Food and Biosciences Institute, Newforge Lane, Upper Malone Road, Belfast BT9 5PX, United Kingdom
| | - C Ferris
- Agri-Food and Biosciences Institute, Newforge Lane, Upper Malone Road, Belfast BT9 5PX, United Kingdom
| | - K L Ingvartsen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - D C Wathes
- Royal Veterinary College, Hatfield, Herts AL9 7TA, United Kingdom
| | | |
Collapse
|
11
|
Alexandre-Moreno S, Bonet-Fernández JM, Atienzar-Aroca R, Aroca-Aguilar JD, Escribano J. Null cyp1b1 Activity in Zebrafish Leads to Variable Craniofacial Defects Associated with Altered Expression of Extracellular Matrix and Lipid Metabolism Genes. Int J Mol Sci 2021; 22:ijms22126430. [PMID: 34208498 PMCID: PMC8234340 DOI: 10.3390/ijms22126430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary CYP1B1 is a cytochrome P450 monooxygenase involved in oxidative metabolism of different endogenous lipids and drugs. The loss of function (LoF) of this gene underlies many cases of recessive primary congenital glaucoma (PCG), an infrequent disease and a common cause of infantile loss of vision in children. To the best of our knowledge, this is the first study to generate a cyp1b1 knockout zebrafish model. The zebrafish line did not exhibit glaucoma-related phenotypes; however, adult mutant zebrafish presented variable craniofacial alterations, including uni- or bilateral craniofacial alterations with incomplete penetrance and variable expressivity. Transcriptomic analyses of seven-dpf cyp1b1-KO zebrafish revealed differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism and inflammation. Overall, this study provides evidence for the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, as well as for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying cyp1b1 disruption-associated pathogenicity. Abstract CYP1B1 loss of function (LoF) is the main known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by delayed embryonic development of the ocular iridocorneal angle; however, the underlying molecular mechanisms are poorly understood. To model CYP1B1 LoF underlying PCG, we developed a cyp1b1 knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries the c.535_667del frameshift mutation that results in the 72% mRNA reduction with the residual mRNA predicted to produce an inactive truncated protein (p.(His179Glyfs*6)). Microphthalmia and jaw maldevelopment were observed in 23% of F0 somatic mosaic mutant larvae (144 hpf). These early phenotypes were not detected in cyp1b1-KO F3 larvae (144 hpf), but 27% of adult (four months) zebrafish exhibited uni- or bilateral craniofacial alterations, indicating the existence of incomplete penetrance and variable expressivity. These phenotypes increased to 86% in the adult offspring of inbred progenitors with craniofacial defects. No glaucoma-related phenotypes were observed in cyp1b1 mutants. Transcriptomic analyses of the offspring (seven dpf) of cyp1b1-KO progenitors with adult-onset craniofacial defects revealed functionally enriched differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism (retinoids, steroids and fatty acids and oxidation–reduction processes that include several cytochrome P450 genes) and inflammation. In summary, this study shows the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, with species dependency, and provides evidence for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying the pathogenicity associated with cyp1b1 disruption.
Collapse
Affiliation(s)
- Susana Alexandre-Moreno
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan-Manuel Bonet-Fernández
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raquel Atienzar-Aroca
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Daniel Aroca-Aguilar
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.-D.A.-A.); (J.E.)
| | - Julio Escribano
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.-D.A.-A.); (J.E.)
| |
Collapse
|
12
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|