1
|
Zhou X, Ba Y, Xu N, Xu H, Zhang Y, Liu L, Weng S, Liu S, Xing Z, Chen S, Luo P, Wang L, Han X. Pharmacogenomics-based subtype decoded implications for risk stratification and immunotherapy in pancreatic adenocarcinoma. Mol Med 2025; 31:62. [PMID: 39972282 PMCID: PMC11837470 DOI: 10.1186/s10020-024-01049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 12/16/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND With fatal malignant peculiarities and poor survival rate, outcomes of pancreatic adenocarcinoma (PAAD) were frustrated by non-response and even resistance to therapy due to heterogeneity across clinical patients. Nevertheless, pharmacogenomics has been developed for individualized-treatment and still maintains obscure in PAAD. METHODS A total of 964 samples from 10 independent multi-center cohorts were enrolled in our study. With drug response data from the profiling of relative inhibition simultaneously in mixtures (PRISM) and genomics of drug sensitivity in cancer (GDSC) databases, we established and validated multidimensionally three pharmacogenomics-classified subtypes using non-negative matrix factorization (NMF) and nearest template prediction (NTP) algorithms, separately. The heterogenous biological characteristics and precision medicine strategies among subtypes were further investigated. RESULTS Three pharmacogenomics-classified subtypes after stable and reproducible validation, distinguished in six aspects of prognosis, biological peculiarities, immune landscapes, genomic variations, immunotherapy and individualized management strategies. Subtype 2 was close to immunocompetent phenotype and projected to immunotherapy; Subtype 3 held most favorable outcomes and metabolic pathways distinctively, promising to be treated with first-line agents. Subtype 1 with worst prognosis, was anticipated to chromosome instability (CIN) phenotype and resistant to chemotherapeutic agents. In addition, ITGB6 contributed to subtype 1 resistance to 5-fluorouracil, and knockdown of ITGB6 enhanced sensitivity to 5-fluorouracil in in vitro experiments. Ultimately, appropriate clinical stratified treatments were assigned to corresponding subtypes according to pharmacogenomic transcripts. Some limitations were not taken into account, thus needs to be supported by more research. CONCLUSION A span-new molecular subtype exploited for PAAD uncovered an insight into precise medication on ground of pharmacogenomics, and highly refined multiple clinical management strategies for specific patients.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nuo Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shutong Liu
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Chen
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
3
|
Matsuoka I, Kasai T, Onaga C, Ozaki A, Motomura H, Maemura Y, Tada Y, Mori H, Hara Y, Xiong Y, Sato K, Tamori S, Sasaki K, Ohno S, Akimoto K. Co‑expression of SLC20A1 and ALDH1A3 is associated with poor prognosis, and SLC20A1 is required for the survival of ALDH1‑positive pancreatic cancer stem cells. Oncol Lett 2024; 28:426. [PMID: 39021737 PMCID: PMC11253103 DOI: 10.3892/ol.2024.14558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
Solute carrier family 20 member 1 (SLC20A1) is a sodium/inorganic phosphate symporter, which has been identified as a prognostic marker in several types of cancer, including pancreatic cancer. However, to the best of our knowledge, the association between SLC20A1 expression and cancer stem cell (CSC) markers, such as aldehyde dehydrogenase 1 (ALDH1), in pancreatic ductal adenocarcinoma (PDAC), and the role of SLC20A1 in PDAC CSCs remains unclear. In the present study, a genomic dataset of primary pancreatic cancer (The Cancer Genome Atlas, Pan-Cancer Atlas) was downloaded and analyzed. Kaplan-Meier analysis and multivariate Cox regression analysis were performed to evaluate the overall survival, disease-specific survival (DSS), disease-free interval (DFI) and progression-free interval (PFI). Subsequently, SLC20A1 small interfering RNA (siRNA) knockdown (KD) was induced in the PANC-1 and MIA-PaCa-2 PDAC cell lines, and in sorted high ALDH1 activity (ALDH1high) cells, after which, cell viability, in vitro tumor sphere formation, cell death and caspase-3 activity were examined. The results revealed that patients with high expression of SLC20A1 (SLC20A1 high) at tumor stage I had a poor prognosis compared with patients with low expression of SLC20A1 (SLC20A1 low) in terms of DSS, DFI and PFI. In addition, patients with high expression of SLC20A1 and ALDH1A3 (SLC20A1 high ALDH1A3 high) exhibited poorer clinical outcomes than patients with high expression of SLC20A1 and low expression of ALDH1A3 (SLC20A1 high ALDH1A3 low), low expression of SLC20A1 and high expression of ALDH1A3 (SLC20A1 low ALDH1A3 high) and SLC20A1 low ALDH1A3 low. SLC20A1 siRNA KD in ALDH1high cells isolated from PANC-1 and MIA-PaCa-2 cell lines resulted in suppression of in vitro tumorsphere formation, and enhancement of cell death and caspase-3 activity. These results suggested that SLC20A1 was involved in cell survival via the suppression of caspase-3-dependent apoptosis, and contributed to cancer progression and poor clinical outcomes in PDAC. In conclusion, SLC20A1 may be used as a prognostic marker and novel therapeutic target of ALDH1-positive pancreatic CSCs.
Collapse
Affiliation(s)
- Izumi Matsuoka
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takahiro Kasai
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Chotaro Onaga
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Ayaka Ozaki
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Hitomi Motomura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Maemura
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuna Tada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Haruka Mori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yasushi Hara
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yuyun Xiong
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Keiko Sato
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shoma Tamori
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazunori Sasaki
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeo Ohno
- Laboratory of Cancer Biology, Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
- Research Division of Medical Data Science, Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Padzińska-Pruszyńska IB, Akbar MW, Isbilen M, Górka E, Kucukkaraduman B, Canlı SD, Dedeoğlu E, Azizolli S, Cela I, Akcay AG, Hakanoglu H, Bodnar L, Cierniak S, Kozielec Z, Pruszyński JJ, Bittel M, Gure AO, Król M, Taciak B. Breast Cancer Plasticity after Chemotherapy Highlights the Need for Re-Evaluation of Subtyping in Residual Cancer and Metastatic Tissues. Int J Mol Sci 2024; 25:6054. [PMID: 38892243 PMCID: PMC11172877 DOI: 10.3390/ijms25116054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
This research paper presents a novel approach to identifying biomarkers that can be used to prognosticate patients with triple-negative breast cancer (TNBC) eligible for neoadjuvant therapy. The study utilized survival and RNA sequencing data from a cohort of TNBC patients and identified 276 genes whose expression was related to survival in such patients. The gene expression data were then used to classify patients into two major groups based on the presence or absence of Wingless/Integrated-pathway (Wnt-pathway) and mesenchymal (Mes) markers (Wnt/Mes). Patients with a low expression of Wnt/Mes-related genes had a favorable outcome, with no deaths observed during follow-up, while patients with a high expression of Wnt/Mes genes had a higher mortality rate of 50% within 19 months. The identified gene list could be validated and potentially used to shape treatment options for TNBC patients eligible for neoadjuvant therapy providing valuable insights into the development of more effective treatments for TNBC. Our data also showed significant variation in gene expression profiles before and after chemotherapy, with most tumors switching to a more mesenchymal/stem cell-like profile. To verify this observation, we performed an in silico analysis to classify breast cancer tumors in Prediction Analysis of Microarray 50 (PAM50) molecular classes before treatment and after treatment using gene expression data. Our findings demonstrate that following drug intervention and metastasis, certain tumors undergo a transition to alternative subtypes, resulting in diminished therapeutic efficacy. This underscores the necessity for reevaluation of patients who have experienced relapse or metastasis post-chemotherapy, with a focus on molecular subtyping. Tailoring treatment strategies based on these refined subtypes is imperative to optimize therapeutic outcomes for affected individuals.
Collapse
Affiliation(s)
| | - Muhammad Waqas Akbar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
| | - Murat Isbilen
- Department of Biostatistics and Bioinformatics, Acibadem University, Istanbul 34752, Turkey
| | - Emilia Górka
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (I.B.P.-P.); (M.K.)
| | - Baris Kucukkaraduman
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
| | - Seçil Demirkol Canlı
- Molecular Pathology Application and Research Center, Hacettepe University, Ankara 06100, Turkey
| | - Ege Dedeoğlu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
| | - Shila Azizolli
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
| | - Isli Cela
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
| | - Abbas Guven Akcay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
| | - Hasim Hakanoglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey; (M.W.A.); (A.G.A.); (H.H.)
- Department of Genetics and Bioengineering, Istanbul Bilgi University, Istanbul 34060, Turkey
| | - Lubomir Bodnar
- Department of Clinical Oncology and Radiotherapy, St. John Paul II Mazovia Regional Hospital in Siedlce, 08-110 Siedlce, Poland
- Faculty of Medical and Health Sciences, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Szczepan Cierniak
- Department of Pathomorphology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Zygmunt Kozielec
- Department of Pathomorphology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration’s Hospital, 11-041 Olsztyn, Poland
- Department of Pathomorphology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Jacek Jerzy Pruszyński
- Department of Geriatrics and Gerontology, School of Public Health, Centre of Postgraduate Medical Education, 02-673 Warsaw, Poland
| | - Martyna Bittel
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (I.B.P.-P.); (M.K.)
| | | | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (I.B.P.-P.); (M.K.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (I.B.P.-P.); (M.K.)
| |
Collapse
|
5
|
Lu H, Zheng LY, Wu LY, Chen J, Xu N, Mi SC. The immune escape signature predicts the prognosis and immunotherapy sensitivity for pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:978921. [PMID: 36147906 PMCID: PMC9486201 DOI: 10.3389/fonc.2022.978921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 01/30/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide. Immune escape is considered to be a reason for immunotherapy failure in PDAC. In this study, we explored the correlation between immune escape-related genes and the prognosis of PDAC patients. Methods 1163 PDAC patients from four public databases, including The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), Array-express, and Gene Expression Omnibus (GEO), were included in our study. Cox regression analysis was used to identify the 182 immune genes which were significantly associated with overall survival (OS). And then we established an immune escape-related gene prognosis index (IEGPI) score using several datasets as the training cohort and validated it using the validation cohort. Kaplan-Meier (KM) and Cox regression analysis were used to detect the relationship of IEGPI score with OS. We further explored the relationship between the IEGPI and immune indexes. And the prediction value of response for immunotherapy in Tumor Immune Dysfunction and Exclusion (TIDE) dataset. Results We establish an IEGPI score based on 27 immune escape genes which were significantly related to the prognosis of OS in PDAC patients. Patients in the high-IEGPI group had a significantly worse overall survival rate compared with that in the low-IEGPI groups by KM curves and cox-regression. 5 of the 32 cancer types in TCGA could be significantly distinguished in survival rates through the low- and high-IEGPI groups. Moreover, the correlation between the IEGPI score was negatively correlated with an immune score in several datasets. And higher IEGPI better recurrence-free survival (RFS) and OS in the patients after patients were treated with both PD-1 and CTLA4 in the public datasets (P<0.05). Intriguingly, by using RT-PCR, we verified that the gene of PTPN2, CEP55, and JAK2 were all higher in the BxPC-3 and PANC-1 than HPDE5 cells. Lastly, we found that the IEGPI score was higher in K-rasLSL.G12D/+, p53LSL.R172H/+, Pdx1Cre (KPC) mice model with anti-PD-L1 than that without anti-PD-L1. Conclusion Using the immune escape-related genes, our study established and validated an IEGPI score in PDAC patients from the public dataset. IEGPI score has the potential to serve as a prognostic marker and as a tool for selecting tumor patients suitable for immunotherapy in clinical practice.
Collapse
|
6
|
Yang J, Wei X, Hu F, Dong W, Sun L. Development and validation of a novel 3-gene prognostic model for pancreatic adenocarcinoma based on ferroptosis-related genes. Cancer Cell Int 2022; 22:21. [PMID: 35033072 PMCID: PMC8760727 DOI: 10.1186/s12935-021-02431-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background Molecular markers play an important role in predicting clinical outcomes in pancreatic adenocarcinoma (PAAD) patients. Analysis of the ferroptosis-related genes may provide novel potential targets for the prognosis and treatment of PAAD. Methods RNA-sequence and clinical data of PAAD was downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) public databases. The PAAD samples were clustered by a non-negative matrix factorization (NMF) algorithm. The differentially expressed genes (DEGs) between different subtypes were used by “limma_3.42.2” package. The R software package clusterProfiler was used for functional enrichment analysis. Then, a multivariate Cox proportional and LASSO regression were used to develop a ferroptosis-related gene signature for pancreatic adenocarcinoma. A nomogram and corrected curves were constructed. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, migration and invasion assays. Results The 173 samples were divided into 3 categories (C1, C2, and C3) and a 3-gene signature model (ALOX5, ALOX12, and CISD1) was constructed. The prognostic model showed good independent prognostic ability in PAAD. In the GSE62452 external validation set, the molecular model also showed good risk prediction. KM-curve analysis showed that there were significant differences between the high and low-risk groups, samples with a high-risk score had a worse prognosis. The predictive efficiency of the 3-gene signature-based nomogram was significantly better than that of traditional clinical features. For comparison with other models, that our model, with a reasonable number of genes, yields a more effective result. The results obtained with qPCR and IHC assays showed that ALOX5 was highly expressed, whether ALOX12 and CISD1 were expressed at low levels in tissue samples. Finally, function assays results suggested that ALOX5 may be an oncogene and ALOX12 and CISD1 may be tumor suppressor genes. Conclusions We present a novel prognostic molecular model for PAAD based on ferroptosis-related genes, which serves as a potentially effective tool for prognostic differentiation in pancreatic cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02431-8.
Collapse
Affiliation(s)
- Jihua Yang
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - XiaoHong Wei
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| | - Liao Sun
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
7
|
Ye Y, Chen Z, Shen Y, Qin Y, Wang H. Development and validation of a four-lipid metabolism gene signature for diagnosis of pancreatic cancer. FEBS Open Bio 2021; 11:3153-3170. [PMID: 33386701 PMCID: PMC8564347 DOI: 10.1002/2211-5463.13074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/11/2022] Open
Abstract
Abnormal lipid metabolism is closely related to the malignant biological behavior of tumor cells. Such abnormal lipid metabolism provides energy for rapid proliferation, and certain genes related to lipid metabolism encode important components of tumor signaling pathways. In this study, we analyzed pancreatic cancer datasets from The Cancer Genome Atlas and searched for prognostic genes related to lipid metabolism in the Molecular Signature Database. A risk score model was built and verified using the GSE57495 dataset and International Cancer Genome Consortium dataset. Four molecular subtypes and 4249 differentially expressed genes (DEGs) were identified. The DEGs obtained by Weighted Gene Coexpression Network Construction analysis were intersected with 4249 DEGs to obtain a total of 1340 DEGs. The final prognosis model included CA8, CEP55, GNB3 and SGSM2, and these had a significant effect on overall survival. The area under the curve at 1, 3 and 5 years was 0.72, 0.79 and 0.87, respectively. These same results were obtained using the validation cohort. Survival analysis data showed that the model could stratify the prognosis of patients with different clinical characteristics, and the model has clinical independence. Functional analysis indicated that the model is associated with multiple cancer-related pathways. Compared with published models, our model has a higher C-index and greater risk value. In summary, this four-gene signature is an independent risk factor for pancreatic cancer survival and may be an effective prognostic indicator.
Collapse
Affiliation(s)
- Yanrong Ye
- Department of PharmacyZhongshan HospitalFudan UniversityShanghaiChina
- Department of PharmacyXiamen BranchZhongshan HospitalFudan UniversityXiamenChina
| | - Zhe Chen
- Department of PharmacyZhongshan HospitalFudan UniversityShanghaiChina
| | - Yun Shen
- Department of PharmacyZhongshan HospitalFudan UniversityShanghaiChina
| | - Yan Qin
- Department of PharmacyZhongshan HospitalFudan UniversityShanghaiChina
| | - Hao Wang
- Teaching Center of Experimental MedicineShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Gutiérrez ML, Muñoz-Bellvís L, Orfao A. Genomic Heterogeneity of Pancreatic Ductal Adenocarcinoma and Its Clinical Impact. Cancers (Basel) 2021; 13:4451. [PMID: 34503261 PMCID: PMC8430663 DOI: 10.3390/cancers13174451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer death due to limited advances in recent years in early diagnosis and personalized therapy capable of overcoming tumor resistance to chemotherapy. In the last decades, significant advances have been achieved in the identification of recurrent genetic and molecular alterations of PDAC including those involving the KRAS, CDKN2A, SMAD4, and TP53 driver genes. Despite these common genetic traits, PDAC are highly heterogeneous tumors at both the inter- and intra-tumoral genomic level, which might contribute to distinct tumor behavior and response to therapy, with variable patient outcomes. Despite this, genetic and genomic data on PDAC has had a limited impact on the clinical management of patients. Integration of genomic data for classification of PDAC into clinically defined entities-i.e., classical vs. squamous subtypes of PDAC-leading to different treatment approaches has the potential for significantly improving patient outcomes. In this review, we summarize current knowledge about the most relevant genomic subtypes of PDAC including the impact of distinct patterns of intra-tumoral genomic heterogeneity on the classification and clinical and therapeutic management of PDAC.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| | - Luis Muñoz-Bellvís
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
- Service of General and Gastrointestinal Surgery, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain;
- Cancer Research Center (IBMCC-CSIC/USAL), 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, 28029 Madrid, Spain
| |
Collapse
|
9
|
Zhang X, Chen Q, Liu Q, Wang Y, Wang F, Zhao Z, Zhao G, Lau WY, Gao Y, Liu R. Development and validation of glycolysis-related prognostic score for prediction of prognosis and chemosensitivity of pancreatic ductal adenocarcinoma. J Cell Mol Med 2021; 25:5615-5627. [PMID: 33942483 PMCID: PMC8184720 DOI: 10.1111/jcmm.16573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with aggressive biological behaviour. Its rapid proliferation and tumour growth require reprogramming of glucose metabolism or the Warburg effect. However, the association between glycolysis-related genes with clinical features and prognosis of PDAC is still unknown. Here, we used the meta-analysis to correlate the hazard ratios (HR) of 106 glycolysis genes from MSigDB by the cox proportional hazards regression analysis in 6 clinical data sets of PDAC patients to form a training cohort, and a single group of PDAC patients from the TCGA, ICGC, Arrayexpress and GEO databases to form the validation cohort. Then, a glycolysis-related prognosis (GRP) score based on 29 glycolysis prognostic genes was established in 757 PDAC patients from the training composite cohort and validated in 267 ICGC-CA validation cohort (all P < .05). In addition, including PADC, the prognostic value was also confirmed in other 7 out of 30 pan-cancer cohorts. The GRP score was significantly related to specific metabolism pathways, immune genes and immune cells in the patients with PADC (all P < .05). Finally, by combining with immune cells, the GRP score also well-predicted the chemosensitivity of patients with PADC in the TCGA cohort (AUC = 0.709). In conclusion, this study developed a GRP score for patients with PDAC in predicting prognosis and chemosensitivity for PDAC.
Collapse
Affiliation(s)
- Xiu‐Ping Zhang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Qinjunjie Chen
- Department of Hepatic Surgery IVThe Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Qu Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Yang Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Fei Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Zhi‐Ming Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Guo‐Dong Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Wan Yee Lau
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
- Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Yu‐Zhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Rong Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| |
Collapse
|
10
|
Sharma A, Liu H, Herwig-Carl MC, Chand Dakal T, Schmidt-Wolf IGH. Epigenetic Regulatory Enzymes: mutation Prevalence and Coexistence in Cancers. Cancer Invest 2021; 39:257-273. [PMID: 33411587 DOI: 10.1080/07357907.2021.1872593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation is an important layer of transcriptional control with the particularity to affect the broad spectrum of genome. Over the years, largely due to the substantial number of recurrent mutations, there have been hundreds of novel driver genes characterized in various cancers. Additionally, the relative contribution of two dysregulated epigenomic entities (DNA methylation and histone modifications) that gradually drive the cancer phenotype remains in the research focus. However, a complex scenario arises when the disease phenotype does not harbor any relevant mutation or an abnormal transcription level. Although the cancer landscape involves the contribution of multiple genetic and non-genetic factors, herein, we discuss specifically the mutation spectrum of epigenetically-related enzymes in cancer. In addition, we address the coexistence of these two epigenetic entities in malignant human diseases, especially cancer. We suggest that the study of epigenetically-related somatic mutations in the early cellular differentiation stage of embryonic development might help to understand their later-staged footprints in the cancer genome. Furthermore, understanding the co-occurrence and/or inverse association of different disease types and redefining the general definition of "healthy" controls could provide insights into the genome reorganization.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Integrated Oncology, CIO Bonn, University Hospital Bonn, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | | | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Rajasthan, India
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, CIO Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Rahmani Moghadam E, Raei M, Kalantari M, Tavakol S, Mohammadinejad R, Najafi M, Tay FR, Makvandi P. Progress in Natural Compounds/siRNA Co-delivery Employing Nanovehicles for Cancer Therapy. ACS COMBINATORIAL SCIENCE 2020; 22:669-700. [PMID: 33095554 PMCID: PMC8015217 DOI: 10.1021/acscombsci.0c00099] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Orta Mahalle,
Üniversite Caddesi No. 27, Orhanlı,
Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Ali Zarrabi
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul Turkey
| | - Kiavash Hushmandi
- Department
of Food Hygiene and Quality Control, Division of Epidemiology &
Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran
| | - Farid Hashemi
- Department
of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department
of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Mehdi Raei
- Health Research
Center, Life Style Institute, Baqiyatallah
University of Medical Sciences, Tehran 1435916471, Iran
| | - Mahshad Kalantari
- Department
of Genetics, Tehran Medical Sciences Branch, Azad University, Tehran 19168931813, Iran
| | - Shima Tavakol
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 1449614525, Iran
| | - Reza Mohammadinejad
- Pharmaceutics
Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Masoud Najafi
- Medical
Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Radiology
and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Franklin R. Tay
- College
of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Pooyan Makvandi
- Istituto
Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa Italy
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| |
Collapse
|