1
|
Zhang R, John Martin JJ, Liu X, Li X, Zhou L, Li R, Fu X, Li W, Cao H. Joint analysis of transcriptional metabolism for flavonoid synthesis during different developmental periods in oil palm exocarp. FRONTIERS IN PLANT SCIENCE 2025; 16:1530673. [PMID: 40196433 PMCID: PMC11973354 DOI: 10.3389/fpls.2025.1530673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 04/09/2025]
Abstract
To identify candidate genes for breeding oil palm varieties with high flavonoid content through molecular biotechnology, this study analyzed the metabolomes and transcriptomes of oil palm exocarp at different developmental stages using LC-MS/MS and RNA-Seq techniques. The green fruiting type (FS) oil palm exocarp at 95 days (FS1), 125 days (FS2), and 185 days (FS3) after pollination served as the materials. The enzyme genes F3H, CHS, ANS, and DFR were positively correlated with Quercetin-3-O-sambubioside. DFR also showed positive correlations with Afzelechin, Epiafzelechin, and Baimaside. In contrast, F3H, CHS, and ANS were negatively correlated with Hesperetin-7-O-glucoside. Additionally, CYP73A, UGT73C6, FG2-1, and FG2-2 were negatively correlated with Afzelechin, Epiafzelechin, Quercetin-3-O-sambubioside, and Baimaside, while CYP75A was negatively correlated with Epiafzelechin, Quercetin-3-O-sambubioside, and Baimaside. These results suggest that F3H, CHS, ANS, and DFR play a role in promoting Quercetin-3-O-sambubioside* synthesis, with DFR further enhancing the production of Afzelechin, Epiafzelechin, and Baimaside. On the other hand, F3H, CHS, and ANS may inhibit Hesperetin-7-O-glucoside synthesis. Meanwhile, CYP73A, UGT73C6, FG2-1, and FG2-2 appear to suppress the synthesis of multiple flavonoids, including Afzelechin, Epiafzelechin, Quercetin-3-O-sambubioside*, and Baimaside. Lastly, CYP75A is implicated in suppressing Epiafzelechin, Quercetin-3-O-sambubioside*, and Baimaside synthesis. These findings provide a foundation for future molecular breeding efforts targeting flavonoid-rich oil palm varieties.
Collapse
Affiliation(s)
- Ruimin Zhang
- National Key Laboratory of Germplasm Innovation and Utilization of Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | | | - Xiaoyu Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xinyu Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Rui Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xiaopeng Fu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Wenrao Li
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| |
Collapse
|
2
|
Wang C, Zhang J, Li J, Chai Q, Xie J. Integrated metabolomics and transcriptomics analysis reveals the potential mechanism by which Methyl jasmonate enhances the pungent flavor of soilless-cultivated Chinese chives (Allium tuberosum). BMC PLANT BIOLOGY 2025; 25:375. [PMID: 40122824 PMCID: PMC11931784 DOI: 10.1186/s12870-025-06410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Methyl jasmonate (MeJA) is an effective plant elicitor that enhances secondary metabolism. Chinese chives are prized for their pungent flavor, yet the biosynthetic pathways and regulatory mechanisms of flavor compounds induced by MeJA remain unclear. METHODOLOGY This study integrated metabolomic and transcriptomic analyses to elucidate how MeJA modulates the biosynthesis of flavor substance precursors in soilless-cultivated Chinese chives. RESULTS MeJA treatment improved the dry matter content and nutritional quality of Chinese chives. We identified 36 volatile and 183 nonvolatile differentially abundant metabolites between the MeJA-treated and control groups. Gene expression analysis revealed 193 candidate genes associated with flavor formation. Among all the genes, a total of 2,667 DEGs were enriched primarily in metabolic pathways, including secondary metabolite biosynthesis, linoleic acid metabolism, and phenylpropanoid biosynthesis. Furthermore, exogenous MeJA inhibited the synthesis of endogenous jasmonic acid as well as enzyme activity and gene expression related to metabolic pathways. It also promoted the conversion of S-alkyl-L-cysteine to S-alk(en)ylcysteine sulfoxides (CSOs), increasing the accumulation of the flavor precursor CSOs and increasing the levels of S-methyl-L-cysteine. This led to increased concentrations of the key garlic flavor compounds methiin and alliin, intensifying the pungent flavor of Chinese chives. Notably, MeJA-induced AtuFMO1 was associated with enhanced pungent flavor and may be regulated by AtuPHL7 and AP2/ERF-ERF transcription factors. CONCLUSION In conclusion, exogenous MeJA activates key enzyme-encoding genes involved in the biosynthesis of garlic flavor precursor CSOs, leading to increased accumulation of the spicy compounds Methiin and Alliin. These findings establish AtuFMO1 as a central hub linking hormonal signaling to flavor biosynthesis and provide molecular targets for improving Allium crop flavor and quality through precision horticulture.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Aridland Crop Science /College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science /College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
3
|
Liu Y, Xu Y, Xu H, Amilijiang W, Wang H. Developing and applying a virus-induced gene silencing system for functional genomics in walnut (Juglans regia L.) mediated by tobacco rattle virus. Gene 2025; 936:149087. [PMID: 39542283 DOI: 10.1016/j.gene.2024.149087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Walnut (Juglans regia L.) is a high-value tree species planted worldwide, but the incomplete less developed genetic transformation system limits its gene function analysis. In this study, virus-induced gene silencing (VIGS) mediated by tobacco rattle virus (TRV) technology was applied to walnut seedlings to degrade the transcript of target gene. Different infiltration methods were used to explore the effects of infection mode, Agrobacterium cell density, silencing fragment length, and walnut cultivars. The results showed that spray infiltration of seedlings resulted in a photobleaching phenotype of the whole plant. Leaf injection was a more effective way of infiltration. The optimal combination was the Agrobacterium cell density at OD600 = 1.1 with target fragment = 255 bp for the treatment of walnut early-fruiting cultivar 'Xiangling.' This combination can reach up to 48 % of gene silencing efficiency. Based on this optimized VIGS system, silencing a walnut chlorophyll synthesis-related gene, JrPOR (Protochlorophyllide reductase), to further validate the system's effect. The results showed that the expression of JrPOR was significantly repressed, and the chlorophyll level of the silenced plants was significantly decreased compared with the control. The above results indicate that the walnut TRV-VIGS system has been successfully established and can be used for reverse genetic studies, providing an option for verifying gene function in walnut.
Collapse
Affiliation(s)
- Yaoxin Liu
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China
| | - Yongjie Xu
- Hubei Academy of Forestry Science, Woody Grain and Oil Forest Engineering Technology Research Center of Hubei Province, Wuhan 430075, China
| | - Haodong Xu
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China
| | - Wulamurusuli Amilijiang
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China
| | - Hua Wang
- Huazhong Agriculture University College of Horticulture and Forestry Sciences, Wuhan 430070, China.
| |
Collapse
|
4
|
Tabassum N, Shafiq M, Fatima S, Tahir S, Tabassum B, Ali Q, Javed MA. Genome-wide in-silico analysis of ethylene biosynthesis gene family in Musa acuminata L. and their response under nutrient stress. Sci Rep 2024; 14:558. [PMID: 38177217 PMCID: PMC10767074 DOI: 10.1038/s41598-023-51075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ethylene is a gaseous phytohormone involved in plants' growth and developmental processes, including seed germination, root initiation, fruit ripening, flower and leaf senescence, abscission, and stress responses. Ethylene biosynthesis (EB) gene analysis in response to nitrogen (N) and potassium (K) stress has not yet been conducted in Musa acuminata (banana) roots. The genome mining of banana (Musa acuminata L.) revealed 14 putative 1-aminocyclopropane-1-carboxylate synthase (ACS), 10 1-aminocyclopropane-1-carboxylate oxidase (ACO), and 3 Ethylene overproducer 1 (ETO1) genes. ACS, ACO, and ETO1 proteins possessed amino acid residues ranging from 422-684, 636-2670, and 893-969, respectively, with molecular weight (Mw) ranging from 4.93-7.55 kD, 10.1-8.3 kD and 10.1-10.78 kD. The number of introns present in ACS, ACO, and ETO1 gene sequences ranges from 0-14, 1-6, and 0-6, respectively. The cis-regulatory element analysis revealed the presence of light-responsive, abscisic acid, seed regulation, auxin-responsive, gibberellin element, endosperm-specific, anoxic inducibility, low-temperature responsiveness, salicylic acid responsiveness, meristem-specific and stress-responsive elements. Comprehensive phylogenetic analyses ACS, ACO, and ETO1 genes of Banana with Arabidopsis thaliana revealed several orthologs and paralogs assisting in understanding the putative functions of these genes. The expression profile of Musa acuminata genes in root under normal and low levels of nitrogen and potassium shows that MaACS14 and MaACO6 expressed highly at normal nitrogen supply. MaACS1 expression was significantly upregulated at low potassium levels, whereas, MaACO6 gene expression was significantly downregulated. The functional divergence and site-specific selective pressures on specific gene sequences of banana have been investigated. The bioinformatics-based genome-wide assessment of the family of banana attempted in the present study could be a significant step for deciphering novel ACS, ACO, and ETO1 genes based on genome-wide expression profiling.
Collapse
Affiliation(s)
- Nosheen Tabassum
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan.
| | - Sameen Fatima
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Sana Tahir
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan.
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| |
Collapse
|
5
|
Ahmadi H, Sheikh-Assadi M, Fatahi R, Zamani Z, Shokrpour M. Optimizing an efficient ensemble approach for high-quality de novo transcriptome assembly of Thymus daenensis. Sci Rep 2023; 13:12415. [PMID: 37524806 PMCID: PMC10390528 DOI: 10.1038/s41598-023-39620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Non-erroneous and well-optimized transcriptome assembly is a crucial prerequisite for authentic downstream analyses. Each de novo assembler has its own algorithm-dependent pros and cons to handle the assembly issues and should be specifically tested for each dataset. Here, we examined efficiency of seven state-of-art assemblers on ~ 30 Gb data obtained from mRNA-sequencing of Thymus daenensis. In an ensemble workflow, combining the outputs of different assemblers associated with an additional redundancy-reducing step could generate an optimized outcome in terms of completeness, annotatability, and ORF richness. Based on the normalized scores of 16 benchmarking metrics, EvidentialGene, BinPacker, Trinity, rnaSPAdes, CAP3, IDBA-trans, and Velvet-Oases performed better, respectively. EvidentialGene, as the best assembler, totally produced 316,786 transcripts, of which 235,730 (74%) were predicted to have a unique protein hit (on uniref100), and also half of its transcripts contained an ORF. The total number of unique BLAST hits for EvidentialGene was approximately three times greater than that of the worst assembler (Velvet-Oases). EvidentialGene could even capture 17% and 7% more average BLAST hits than BinPacker and Trinity. Although BinPacker and CAP3 produced longer transcripts, the EvidentialGene showed a higher collinearity between transcript size and ORF length. Compared with the other programs, EvidentialGene yielded a higher number of optimal transcript sets, further full-length transcripts, and lower possible misassemblies. Our finding corroborates that in non-model species, relying on a single assembler may not give an entirely satisfactory result. Therefore, this study proposes an ensemble approach of accompanying EvidentialGene pipelines to acquire a superior assembly for T. daenensis.
Collapse
Affiliation(s)
- Hosein Ahmadi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Morteza Sheikh-Assadi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran.
| | - Zabihollah Zamani
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| |
Collapse
|
6
|
Ye K, Teng T, Yang T, Zhao D, Zhao Y. Transcriptome analysis reveals the effect of grafting on gossypol biosynthesis and gland formation in cotton. BMC PLANT BIOLOGY 2023; 23:37. [PMID: 36642721 PMCID: PMC9841644 DOI: 10.1186/s12870-022-04010-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Gossypol is a unique secondary metabolite and sesquiterpene in cotton, which is mainly synthesized in the root system of cotton and exhibits many biological activities. Previous research found that grafting affected the density of pigment glands and the gossypol content in cotton. RESULTS This study performed a transcriptome analysis on cotton rootstocks and scions of four grafting methods. The gene expression of mutual grafting and self-grafting was compared to explore the potential genes involved in gossypol biosynthesis. A total of six differentially expressed enzymes were found in the main pathway of gossypol synthesis-sesquiterpene and triterpene biosynthesis (map00909): lupeol synthase (LUP1, EC:5.4.99.41), beta-amyrin synthase (LUP2, EC:5.4.99.39), squalene monooxygenase (SQLE, EC:1.14.14.17), squalene synthase (FDFT1, EC:2.5.1.21), (-)-germacrene D synthase (GERD, EC:4.2.3.75), ( +)-delta-cadinene synthase (CADS, EC:4.2.3.13). By comparing the results of the gossypol content and the density of the pigment gland, we speculated that these six enzymes might affect the biosynthesis of gossypol. It was verified by qRT-PCR analysis that grafting could influence gene expression of scion and stock. After suppressing the expression of the LUP1, FDFT1, and CAD genes by VIGS technology, the gossypol content in plants was significantly down-regulated. CONCLUSIONS These results indicate the potential molecular mechanism of gossypol synthesis during the grafting process and provide a theoretical foundation for further research on gossypol biosynthesis.
Collapse
Affiliation(s)
- Kun Ye
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Teng Teng
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Teng Yang
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Degang Zhao
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Yichen Zhao
- College of Tea Sciences, College of Life Sciences, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Molecular Mechanism of Cold Tolerance of Centipedegrass Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24021265. [PMID: 36674780 PMCID: PMC9860682 DOI: 10.3390/ijms24021265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Low temperature is an important limiting factor in the environment that affects the distribution, growth and development of warm-season grasses. Transcriptome sequencing has been widely used to mine candidate genes under low-temperature stress and other abiotic stresses. However, the molecular mechanism of centipedegrass in response to low-temperature stress was rarely reported. To understand the molecular mechanism of centipedegrass in response to low-temperature stress, we measured physiological indicators and sequenced the transcriptome of centipedegrass under different stress durations. Under cold stress, the SS content and APX activity of centipedegrass increased while the SOD activity decreased; the CAT activity, POD activity and flavonoid content first increased and then decreased; and the GSH-Px activity first decreased and then increased. Using full-length transcriptome and second-generation sequencing, we obtained 38.76 G subreads. These reads were integrated into 177,178 isoforms, and 885 differentially expressed transcripts were obtained. The expression of AUX_IAA and WRKY transcription factors and HSF transcription-influencing factors increased during cold stress. Through KEGG enrichment analysis, we determined that arginine and proline metabolism, plant circadian rhythm, plant hormone signal transduction and the flavonoid biosynthesis pathways played important roles in the cold stress resistance of centipedegrass. In addition, by using weighted gene coexpression network analysis (WGCNA), we determined that the turquoise module was significantly correlated with SS content and APX activity, while the blue module was significantly negatively correlated with POD and CAT activity. This paper is the first to report the response of centipedegrass to cold stress at the transcriptome level. Our results help to clarify the molecular mechanisms underlying the cold tolerance of warm-season grasses.
Collapse
|
8
|
Jia Z, Zhang M, Ma C, Wang Z, Wang Z, Fang Y, Wang J. Identification and Functional Validation of Auxin-Responsive Tabzip Genes from Wheat Leaves in Arabidopsis. Int J Mol Sci 2023; 24:ijms24010756. [PMID: 36614202 PMCID: PMC9821592 DOI: 10.3390/ijms24010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Leaves are an essential and unique organ of plants, and many studies have proved that auxin has significant impacts on the architecture of leaves, thus the manipulation of the three-dimensional structure of a leaf could provide potential strategies for crop yields. In this study, 32 basic leucine zipper transcription factors (bZIP TFs) which responded to 50 μM of indole-acetic acid (IAA) were identified in wheat leaves by transcriptome analysis. Phylogenetic analysis indicated that the 32 auxin-responsive TabZIPs were classified into eight groups with possible different functions. Phenotypic analysis demonstrated that knocking out the homologous gene of the most down-regulated auxin-responsive TabZIP6D_20 in Arabidopsis (AtHY5) decreased its sensitivity to 1 and 50 μM IAA, while the TabZIP6D_20/hy5 complementary lines recovered its sensitivity to auxin as a wild type (Wassilewskija), suggesting that the down-regulated TabZIP6D_20 was a negative factor in the auxin-signaling pathway. These results demonstrated that the auxin-responsive TabZIP genes might have various and vital functions in the architecture of a wheat leaf under auxin response.
Collapse
Affiliation(s)
- Ziyao Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Mengjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Can Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
| | - Zanqiang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Yan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.F.); (J.W.)
| | - Jun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
- Correspondence: (Y.F.); (J.W.)
| |
Collapse
|
9
|
Guo Z, Ma W, Cai L, Guo T, Liu H, Wang L, Liu J, Ma B, Feng Y, Liu C, Pan G. Comparison of anther transcriptomes in response to cold stress at the reproductive stage between susceptible and resistant Japonica rice varieties. BMC PLANT BIOLOGY 2022; 22:500. [PMID: 36284279 PMCID: PMC9597962 DOI: 10.1186/s12870-022-03873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rice is one of the most important cereal crops in the world but is susceptible to cold stress (CS). In this study, we carried out parallel transcriptomic analysis at the reproductive stage on the anthers of two Japonica rice varieties with contrasting CS resistance: cold susceptible Longjing11 (LJ11) and cold resistant Longjing25 (LJ25). RESULTS According to the obtained results, a total of 16,762 differentially expressed genes (DEGs) were identified under CS, including 7,050 and 14,531 DEGs in LJ25 and LJ11, respectively. Examining gene ontology (GO) enrichment identified 35 up- and 39 down-regulated biological process BP GO terms were significantly enriched in the two varieties, with 'response to heat' and 'response to cold' being the most enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 33 significantly enriched pathways. Only the carbon metabolism and amino acid biosynthesis pathways with down-regulated DEGs were enriched considerably in LJ11, while the plant hormone signal transduction pathway (containing 153 DEGs) was dramatically improved. Eight kinds of plant hormones were detected in the pathway, while auxin, abscisic acid (ABA), salicylic acid (SA), and ethylene (ETH) signaling pathways were found to be the top four pathways with the most DEGs. Furthermore, the protein-protein interaction (PPI) network analysis identified ten hub genes (co-expressed gene number ≥ 30), including six ABA-related genes. Various DEGs (such as OsDREB1A, OsICE1, OsMYB2, OsABF1, OsbZIP23, OsCATC, and so on) revealed distinct expression patterns among rice types when the DEGs between LJ11 and LJ25 were compared, indicating that they are likely responsible for CS resistance of rice in cold region. CONCLUSION Collectively, our findings provide comprehensive insights into complex molecular mechanisms of CS response and can aid in CS resistant molecular breeding of rice in cold regions.
Collapse
Affiliation(s)
- Zhenhua Guo
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Wendong Ma
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Lijun Cai
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, 154007, Jiamusi, Heilongjiang, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Hao Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, 510640, Guangzhou, Guangdong, China
| | - Linan Wang
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China
| | - Junliang Liu
- Jiamusi Longjing Seed Industry Co., LTD, 154026, Jiamusi, Heilongjiang, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, 161006, Qiqihar, Heilongjiang, China
| | - Yanjiang Feng
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Chuanxue Liu
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| | - Guojun Pan
- Rice Research Institute of Heilongjiang Academy of Agricultural Sciences, 154026, Jiamusi, Heilongjiang, China.
| |
Collapse
|
10
|
Sheikh-Assadi M, Naderi R, Salami SA, Kafi M, Fatahi R, Shariati V, Martinelli F, Cicatelli A, Triassi M, Guarino F, Improta G, Claros MG. Normalized Workflow to Optimize Hybrid De Novo Transcriptome Assembly for Non-Model Species: A Case Study in Lilium ledebourii (Baker) Boiss. PLANTS 2022; 11:plants11182365. [PMID: 36145766 PMCID: PMC9503428 DOI: 10.3390/plants11182365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
A high-quality transcriptome is required to advance numerous bioinformatics workflows. Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcriptomes looks somewhat unexplored, particularly for non-model organisms with complicated (very long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome assembly programs, this study built 11 single assemblies and analyzed their performance on some significant reference-free and reference-based criteria. As well as to reconfirm the outputs of benchmarks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely, normalized benchmarking demonstrated that Velvet–Oases suffer from the worst results, while the EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it could capture even up to 59% more (than Velvet–Oases) unique gene hits. To promote assembly optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each metric can only provide part of the transcriptome status, and one should never settle for just a few evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly strategy might result in less identification of unique gene hits.
Collapse
Affiliation(s)
- Morteza Sheikh-Assadi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (M.S.-A.); (R.N.)
| | - Roohangiz Naderi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (M.S.-A.); (R.N.)
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Mohsen Kafi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Reza Fatahi
- Department of Horticultural Science, Faculty of Agricultural Science and Engineering, University of Tehran, Karaj 31587-77871, Iran
| | - Vahid Shariati
- NIGEB Genome Center, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161, Iran
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Angela Cicatelli
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Francesco Guarino
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples “Federico II”, 80131 Naples, Italy
| | - Manuel Gonzalo Claros
- Molecular Biology and Biochemistry Department, University of Málaga, 29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), 29010 Málaga, Spain
| |
Collapse
|
11
|
Jiao Y, Feng G, Huang L, Nie G, Li Z, Peng Y, Li D, Xiong Y, Hu Z, Zhang X. Complete Chloroplast Genomes of 14 Subspecies of D. glomerata: Phylogenetic and Comparative Genomic Analyses. Genes (Basel) 2022; 13:genes13091621. [PMID: 36140789 PMCID: PMC9498378 DOI: 10.3390/genes13091621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Orchardgrass (Dactylis glomerata L.) is a species in the Gramineae family that is highly important economically and valued for its role in ecology. However, the phylogeny and taxonomy of D. glomerata are still controversial based on current morphological and molecular evidence. The study of chloroplast (cp) genomes has developed into a powerful tool to develop molecular markers for related species and reveal the relationships between plant evolution and phylogenetics. In this study, we conducted comparative genomic analyses and phylogenetic inferences on 14 cp genomes of D. glomerata originating from the Mediterranean and Eurasia. The genome size ranged from 134,375 bp to 134,993 bp and exhibited synteny of gene organization and order. A total of 129–131 genes were identified, including 85–87 protein coding genes, 38 tRNA genes and 8 rRNA genes. The cp sequences were highly conserved, and key sequence variations were detected at the junctions of inverted repeats (IRs)/small single–copy (SSC) regions. Moreover, nine highly variable regions were identified among the subspecies based on a sequence divergence analysis. A total of 285 RNA editing sites were detected that were relevant to 52 genes, where rpoB exhibited the most abundant RNA editing sites. The phylogenetic analysis revealed that all Dactylis subspecies clustered into a monophyletic group and most branches provided a high support bootstrap. The main divergence time of D. glomerata was dated to the Miocene era, and this could have been due to changes in the climate. These findings will provide useful insights for further studies on phylogeny, the identification of subspecies and the development of hypotheses for the evolutionary history of the genus Dactylis and of the Gramineae family.
Collapse
|
12
|
Salinas-Restrepo C, Misas E, Estrada-Gómez S, Quintana-Castillo JC, Guzman F, Calderón JC, Giraldo MA, Segura C. Improving the Annotation of the Venom Gland Transcriptome of Pamphobeteus verdolaga, Prospecting Novel Bioactive Peptides. Toxins (Basel) 2022; 14:408. [PMID: 35737069 PMCID: PMC9228390 DOI: 10.3390/toxins14060408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Spider venoms constitute a trove of novel peptides with biotechnological interest. Paucity of next-generation-sequencing (NGS) data generation has led to a description of less than 1% of these peptides. Increasing evidence supports the underestimation of the assembled genes a single transcriptome assembler can predict. Here, the transcriptome of the venom gland of the spider Pamphobeteus verdolaga was re-assembled, using three free access algorithms, Trinity, SOAPdenovo-Trans, and SPAdes, to obtain a more complete annotation. Assembler's performance was evaluated by contig number, N50, read representation on the assembly, and BUSCO's terms retrieval against the arthropod dataset. Out of all the assembled sequences with all software, 39.26% were common between the three assemblers, and 27.88% were uniquely assembled by Trinity, while 27.65% were uniquely assembled by SPAdes. The non-redundant merging of all three assemblies' output permitted the annotation of 9232 sequences, which was 23% more when compared to each software and 28% more when compared to the previous P. verdolaga annotation; moreover, the description of 65 novel theraphotoxins was possible. In the generation of data for non-model organisms, as well as in the search for novel peptides with biotechnological interest, it is highly recommended to employ at least two different transcriptome assemblers.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
| | - Elizabeth Misas
- Corporación para Investigaciones Biológicas, Medellín 050012, Colombia;
| | - Sebastian Estrada-Gómez
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (S.E.-G.)
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Aven-ida Viel 1497, Santiago 7750000, Chile
| | | | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontifícia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile;
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín 050012, Colombia;
| | - Marco A. Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellín 050012, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
13
|
Ma K, Luo X, Han L, Zhao Y, Mamat A, Li N, Mei C, Yan P, Zhang R, Hu J, Wang J. Transcriptome profiling based on Illumina- and SMRT-based RNA-seq reveals circadian regulation of key pathways in flower bud development in walnut. PLoS One 2021; 16:e0260017. [PMID: 34793486 PMCID: PMC8601540 DOI: 10.1371/journal.pone.0260017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/01/2021] [Indexed: 11/19/2022] Open
Abstract
Flower bud development is a defining feature of walnut, which contributes to the kernel yield, yield stability, fruit quality and commodity value. However, little is known about the mechanism of the flower bud development in walnut. Here, the stages of walnut female flower bud development were divided into five period (P01-05) by using histological observation. They were further studied through PacBio Iso-Seq and RNA-seq analysis. Accordingly, we obtained 52,875 full-length transcripts, where 4,579 were new transcripts, 3,065 were novel genes, 1,437 were consensus lncRNAs and 20,813 were alternatively spliced isoforms. These transcripts greatly improved the current genome annotation and enhanced our understanding of the walnut transcriptome. Next, RNA sequencing of female flower buds at five periods revealed that circadian rhythm-plant was commonly enriched along with the flower bud developmental gradient. A total of 14 differentially expressed genes (DEGs) were identified, and six of them were confirmed by real-time quantitative analysis. Additionally, six and two differentially expressed clock genes were detected to be regulated by AS events and lncRNAs, respectively. All these detected plant circadian genes form a complex interconnected network to regulate the flower bud development. Thus, investigation of key genes associated with the circadian clock could clarify the process of flower bud development in walnut.
Collapse
Affiliation(s)
- Kai Ma
- College of Horticulture, China Agricultural University, Beijing, China
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiang Luo
- State Key Laboratory of Crop Stress Adaption and Improvement, Henan University, Kaifeng, China
| | - Liqun Han
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ning Li
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chuang Mei
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Peng Yan
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Rui Zhang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, China
| | - Jianfang Hu
- College of Horticulture, China Agricultural University, Beijing, China
- * E-mail: (JH); (JW)
| | - Jixun Wang
- Institute of Horticultural and Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- * E-mail: (JH); (JW)
| |
Collapse
|
14
|
Shan N, Xiang Z, Sun J, Zhu Q, Xiao Y, Wang P, Chen X, Zhou Q, Gan Z. Genome-wide analysis of valine-glutamine motif-containing proteins related to abiotic stress response in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2021; 21:492. [PMID: 34696718 PMCID: PMC8546950 DOI: 10.1186/s12870-021-03242-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Cucumber (Cucumis sativus L.) is one of the most important economic crops and is susceptible to various abiotic stresses. The valine-glutamine (VQ) motif-containing proteins are plant-specific proteins with a conserved "FxxhVQxhTG" amino acid sequence that regulates plant growth and development. However, little is known about the function of VQ proteins in cucumber. RESULTS In this study, a total of 32 CsVQ proteins from cucumber were confirmed and characterized using comprehensive genome-wide analysis, and they all contain a conserved motif with 10 variations. Phylogenetic tree analysis revealed that these CsVQ proteins were classified into nine groups by comparing the CsVQ proteins with those of Arabidopsis thaliana, melon and rice. CsVQ genes were distributed on seven chromosomes. Most of these genes were predicted to be localized in the nucleus. In addition, cis-elements in response to different stresses and hormones were observed in the promoters of the CsVQ genes. A network of CsVQ proteins interacting with WRKY transcription factors (CsWRKYs) was proposed. Moreover, the transcripts of CsVQ gene were spatio-temporal specific and were induced by abiotic adversities. CsVQ4, CsVQ6, CsVQ16-2, CsVQ19, CsVQ24, CsVQ30, CsVQ32, CsVQ33, and CsVQ34 were expressed in the range of organs and tissues at higher levels and could respond to multiple hormones and different stresses, indicating that these genes were involved in the response to stimuli. CONCLUSIONS Together, our results reveal novel VQ resistance gene resources, and provide critical information on CsVQ genes and their encoded proteins, which supplies important genetic basis for VQ resistance breeding of cucumber plants.
Collapse
Affiliation(s)
- Nan Shan
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zijin Xiang
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingyu Sun
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qianglong Zhu
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yao Xiao
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Putao Wang
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Chen
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qinghong Zhou
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Zengyu Gan
- Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
15
|
Tiika RJ, Wei J, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide characterization and functional analysis of Xyloglucan endo-transglycosylase/hydrolase (XTH) gene family of Salicornia europaea L. under salinity and drought stress. BMC PLANT BIOLOGY 2021; 21:491. [PMID: 34696719 PMCID: PMC8547092 DOI: 10.1186/s12870-021-03269-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 10/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Salicornia europaea is a halophyte that has a very pronounced salt tolerance. As a cell wall manipulating enzyme, xyloglucan endotransglycosylase/hydrolase (XTH) plays an important role in plant resistance to abiotic stress. However, no systematic study of the XTH gene family in S. europaea is well known. PacBio Iso-Seq transcriptome sequence data were used for bioinformatics and gene expression analysis using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Transcriptome sequencing (PacBio Iso-Seq system) generated 16,465,671 sub-reads and after quality control of Iso-Seq, 29,520 isoforms were obtained with an average length of 2112 bp. A total of 24,869 unigenes, with 98% of which were obtained using coding sequences (CDSs), and 6398 possible transcription factors (TFs) were identified. Thirty-five (35) non-redundant potential SeXTH proteins were identified in S. europaea and categorized into group I/II and group III based on their genetic relatedness. Prediction of the conserved motif revealed that the DE(I/L/F/V)DF(I)EFLG domain was conserved in the S. europaea proteins and a potential N-linked glycosylation domain N(T)V(R/L/T/I)T(S/K/R/F/P)G was also located near the catalytic residues. All SeXTH genes exhibited discrete expression patterns in different tissues, at different times, and under different stresses. For example, 27 and 15 SeXTH genes were positively expressed under salt stress in shoots and roots at 200 mM NaCl in 24 h, and 34 SeXTH genes were also positively regulated under 48 h of drought stress in shoots and roots. This indicates their function in adaptation to salt and drought stress. CONCLUSION The present study discovered SeXTH gene family traits that are potential stress resistance regulators in S. europaea, and this provides a basis for future functional diversity research.
Collapse
Affiliation(s)
- Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
16
|
Comprehensive Characterization of Multitissue Expression Landscape, Co-Expression Networks and Positive Selection in Pikeperch. Cells 2021; 10:cells10092289. [PMID: 34571938 PMCID: PMC8471114 DOI: 10.3390/cells10092289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein–protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns—but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues’ main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.
Collapse
|
17
|
Feng S, Fang H, Liu X, Dong Y, Wang Q, Yang KQ. Genome-wide identification and characterization of long non-coding RNAs conferring resistance to Colletotrichum gloeosporioides in walnut (Juglans regia). BMC Genomics 2021; 22:15. [PMID: 33407106 PMCID: PMC7789297 DOI: 10.1186/s12864-020-07310-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/07/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Walnut anthracnose caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. is an important walnut production problem in China. Although the long non-coding RNAs (lncRNAs) are important for plant disease resistance, the molecular mechanisms underlying resistance to C. gloeosporioides in walnut remain poorly understood. RESULTS The anthracnose-resistant F26 fruits from the B26 clone and the anthracnose-susceptible F423 fruits from the 4-23 clone of walnut were used as the test materials. Specifically, we performed a comparative transcriptome analysis of F26 and F423 fruit bracts to identify differentially expressed LncRNAs (DELs) at five time-points (tissues at 0 hpi, pathological tissues at 24 hpi, 48 hpi, 72 hpi, and distal uninoculated tissues at 120 hpi). Compared with F423, a total of 14,525 DELs were identified, including 10,645 upregulated lncRNAs and 3846 downregulated lncRNAs in F26. The number of upregulated lncRNAs in F26 compared to in F423 was significantly higher at the early stages of C. gloeosporioides infection. A total of 5 modules related to disease resistance were screened by WGCNA and the target genes of lncRNAs were obtained. Bioinformatic analysis showed that the target genes of upregulated lncRNAs were enriched in immune-related processes during the infection of C. gloeosporioides, such as activation of innate immune response, defense response to bacterium, incompatible interaction and immune system process, and enriched in plant hormone signal transduction, phenylpropanoid biosynthesis and other pathways. And 124 known target genes for 96 hub lncRNAs were predicted, including 10 known resistance genes. The expression of 5 lncRNAs and 5 target genes was confirmed by qPCR, which was consistent with the RNA-seq data. CONCLUSIONS The results of this study provide the basis for future functional characterizations of lncRNAs regarding the C. gloeosporioides resistance of walnut fruit bracts.
Collapse
Affiliation(s)
- Shan Feng
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China
| | - Xia Liu
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
- Department of Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qingpeng Wang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
- State Forestry and Grassland Administration Key Laboratory of Silviculture in the Downstream Areas of the Yellow River, Tai'an, 271018, Shandong Province, China.
- Shandong Taishan Forest Ecosystem Research Station, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
18
|
Vahdati K, Sadat-Hosseini M, Martínez-Gómez P, Germanà MA. Production of Haploid and Doubled Haploid Lines in Nut Crops: Persian Walnut, Almond, and Hazelnut. Methods Mol Biol 2021; 2289:179-198. [PMID: 34270071 DOI: 10.1007/978-1-0716-1331-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter deals with induction of haploidy via parthenogenesis in Persian walnut and via microspore embryogenesis in almond and hazelnut. Haploid induction through in situ parthenogenesis using pollination with irradiated pollen to stimulate the embryogenic development of the egg cell, followed by in vitro culture of the immature haploid embryos. Microspore embryogenesis allows the induction of immature pollen grains (microspores), to move away from the normal gametophytic developmental route in the direction of the sporophytic one, yielding homozygous organisms (embryos in this case). Unlike other fruit crops (such as Citrus), regeneration of entire plants has not yet been obtained in our studied nut crops; however, it gives the methodology should be used to continue the roadmap.
Collapse
Affiliation(s)
- Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | | | | | - Maria Antonietta Germanà
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Sudi di Palermo, Palermo, Italy
| |
Collapse
|
19
|
Vahdati K, Arab MM, Sarikhani S. Advances in biotechnology and propagation of nut trees in Iran. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202501003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As one of the main origin centers of nut trees, Iran is the fourth leading nut crops producer in the world (6% of total nut production). Due to the high genetic diversity, development of new varieties and rootstocks with desirable characteristics have been highly considered by fruit breeders in Iran. In this regard, molecular breeders concentrate on filling the gaps in the conventional breeding with the aim of accelerating breeding programs. Recent advancements in molecular breeding such as next-generation sequencing (NGS) techniques, high-throughput genotyping platforms and genomics-based approaches including genome wide association studies (GWAS), and genomic selection (GS) have opened up new avenues to enhance the efficiency of nut trees breeding. Over the past decades, Iranian nut crops breeders have successfully used advanced molecular and genomic tools such as molecular markers, genetic transformations and high-throughput genotyping to explore the genetic basis of the desired traits and eventually to develop new varieties and rootstocks. Due to a broad international cooperation, a clear perspective is envisaged for the nut breeding programs in Iran, especially based on new biotechnology techniques. The propagation of nut trees in Iran have also been dramatically improved. Different types of grafting and tissue culture (micropropagation or somatic embryogenesis) techniques for propagation of nut crops have been studied intensively in the last 30 years in Iran and the successful techniques have been commercialized. Several certified nurseries are producing grafted and micropropagation plants of walnut, pistachio and other nut crops commercially. A part of the grafted and micropropagaited plants of nut crops in Iran is being exported to the other countries. Establishing modern orchards of nut crops using new cultivars and rootsocks is presently being advised by professional consultants.
Collapse
|
20
|
Pan Y, Liang H, Gao L, Dai G, Chen W, Yang X, Qing D, Gao J, Wu H, Huang J, Zhou W, Huang C, Liang Y, Deng G. Transcriptomic profiling of germinating seeds under cold stress and characterization of the cold-tolerant gene LTG5 in rice. BMC PLANT BIOLOGY 2020; 20:371. [PMID: 32762649 PMCID: PMC7409433 DOI: 10.1186/s12870-020-02569-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Low temperature is a limiting factor of rice productivity and geographical distribution. Wild rice (Oryza rufipogon Griff.) is an important germplasm resource for rice improvement. It has superior tolerance to many abiotic stresses, including cold stress, but little is known about the mechanism underlying its resistance to cold. RESULTS This study elucidated the molecular genetic mechanisms of wild rice in tolerating low temperature. Comprehensive transcriptome profiles of two rice genotypes (cold-sensitive ce 253 and cold-tolerant Y12-4) at the germinating stage under cold stress were comparatively analyzed. A total of 42.44-68.71 million readings were obtained, resulting in the alignment of 29,128 and 30,131 genes in genotypes 253 and Y12-4, respectively. Many common and differentially expressed genes (DEGs) were analyzed in the cold-sensitive and cold-tolerant genotypes. Results showed more upregulated DEGs in the cold-tolerant genotype than in the cold-sensitive genotype at four stages under cold stress. Gene ontology enrichment analyses based on cellular process, metabolic process, response stimulus, membrane part, and catalytic activity indicated more upregulated genes than downregulated ones in the cold-tolerant genotype than in the cold-sensitive genotype. Quantitative real-time polymerase chain reaction was performed on seven randomly selected DEGs to confirm the RNA Sequencing (RNA-seq) data. These genes showed similar expression patterns corresponding with the RNA-Seq method. Weighted gene co-expression network analysis (WGCNA) revealed Y12-4 showed more positive genes than 253 under cold stress. We also explored the cold tolerance gene LTG5 (Low Temperature Growth 5) encoding a UDP-glucosyltransferase. The overexpression of the LTG5 gene conferred cold tolerance to indica rice. CONCLUSION Gene resources related to cold stress from wild rice can be valuable for improving the cold tolerance of crops.
Collapse
Affiliation(s)
- Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Haifu Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Dongjin Qing
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Ju Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Juan Huang
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Weiyong Zhou
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | - Chengcui Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Yuntao Liang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, China
| |
Collapse
|