1
|
Rakhshandehroo M, Harvey L, de Bruin A, Timmer E, Lohr J, Tims S, Schipper L. Maternal exposure to purified versus grain-based diet during early lactation in mice affects offspring growth and reduces responsivity to Western-style diet challenge in adulthood. J Dev Orig Health Dis 2025; 16:e3. [PMID: 39780545 DOI: 10.1017/s2040174424000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated. We used a previously validated (C57BL/6J) mouse model to investigate the effects of infant milk formula (IMF) interventions on nutritional programming. Specifically, we investigated the effects of maternal diet type (i.e., grain-based vs purified) during early lactation and prior to the intervention on offspring growth, metabolic phenotype, and gut microbiota profile. Maternal exposure to purified diet led to an increased post-weaning growth velocity in the offspring and reduced adult diet-induced obesity. Further, maternal exposure to purified diet reduced the offspring gut microbiota diversity and modified its composition post-weaning. These data not only reinforce the notion that maternal nutrition significantly influences the programming of offspring vulnerability to an obesogenic diet in adulthood but emphasizes the importance of careful selection of standard background diet type when designing any preclinical study with (early life) nutritional interventions.
Collapse
Affiliation(s)
| | - L Harvey
- Danone Research & Innovation Center, Utrecht, The Netherlands
| | - A de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - E Timmer
- Danone Research & Innovation Center, Utrecht, The Netherlands
| | - J Lohr
- Danone Research & Innovation Center, Utrecht, The Netherlands
| | - S Tims
- Danone Research & Innovation Center, Utrecht, The Netherlands
| | - L Schipper
- Danone Research & Innovation Center, Utrecht, The Netherlands
| |
Collapse
|
2
|
Lehtimäki KK, Rytkönen J, Pussinen R, Shatillo A, Bragge T, Heikkinen T, Fischer DF, Kopanitsa MV, Sweeney P, Nurmi A, Puoliväli J. Physiological and behavioural implications of the portosystemic shunt in C57Bl/6J mice. J Physiol 2024; 602:5353-5373. [PMID: 39365978 DOI: 10.1113/jp287237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
A significant fraction of the popular inbred C57Bl/6J mice show structural and biochemical features of the congenital portosystemic shunt (PSS). How this hepatic abnormality affects physiological and behavioural parameters has not been explored in detail. Here, we confirmed the frequent occurrence of the PSS in C57Bl/6J mice by three different methods. We screened a cohort of 119 C57Bl/6J mice for total bile acids (TBA) in plasma, identified 11 animals (9.2%) with high TBA (>11 µm; 171.1 ± 76.8 µm), and confirmed PSS presence in that subset by magnetic resonance angiography and 1H-magnetic resonance spectroscopy of brain metabolites in the hippocampal area. In addition to the high glutamine and low myo-inositol levels, we detected lower levels of several neurotransmitters and metabolites in the hippocampus, higher brain weight and volume, as well as enhanced brain glucose utilisation in the PSS mice. We also observed differences in peripheral organ weights, haematological cell counts and clinical chemistry parameters in C57Bl/6J mice with and without PSS. Animals with PSS were slightly hyperlocomotive, had better balance on the rotarod, showed altered gait properties, and displayed attenuated fear memory in the fear conditioning test. Furthermore, we revealed a significant alteration of the pharmacokinetic profile of diazepam in C57Bl/6J mice with PSS. Our data support previous reports of hepatic disturbances and demonstrate an altered neurobiological phenotype in C57Bl/6J mice with PSS. Such congenital differences between inbred C57Bl/6J littermates may significantly distort experimental outcomes of pharmacological, behavioural and genetic studies. KEY POINTS: A significant proportion of C57Bl/6J mice, an inbred strain popular in preclinical research, have congenital portosystemic shunts (PSS) that allow venous blood to enter systemic circulation bypassing the liver. In this study, we extended existing knowledge of PSS consequences, particularly with respect to the effects on brain structure and function. We demonstrated that C57Bl/6J mice with PSS differ from their normal counterparts in brain size and contents of several neuroactive substances, as well as in peripheral organ weights, rate of glucose utilisation, blood cell counts and blood clinical chemistry parameters. C57Bl/6J mice with PSS showed altered locomotor behaviour, performed worse in a memory test and had abnormal blood pharmacokinetics of a benzodiazepine drug after a single administration. PSS presence may significantly complicate the interpretation of experiments in C57Bl/6J mice; therefore, we propose that before their use in biomedical studies, these mice should be screened with a simple blood test.
Collapse
Affiliation(s)
| | | | | | | | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | | | - David F Fischer
- Charles River Discovery Services, Chesterford Research Park, Saffron Walden, UK
| | | | | | - Antti Nurmi
- Charles River Discovery Services, Kuopio, Finland
| | | |
Collapse
|
3
|
Yeoh BS, Golonka RM, Saha P, Kandalgaonkar MR, Tian Y, Osman I, Patterson AD, Gewirtz AT, Joe B, Vijay-Kumar M. Urine-based Detection of Congenital Portosystemic Shunt in C57BL/6 Mice. FUNCTION 2023; 4:zqad040. [PMID: 37575479 PMCID: PMC10413929 DOI: 10.1093/function/zqad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Sporadic occurrence of congenital portosystemic shunt (PSS) at a rate of ∼1 out of 10 among C57BL/6 J mice, which are widely used in biomedical research, results in aberrancies in serologic, metabolic, and physiologic parameters. Therefore, mice with PSS should be identified as outliers in research. Accordingly, we sought methods to, reliably and efficiently, identify PSS mice. Serum total bile acids ≥ 40 µm is a bona fide biomarker of PSS in mice but utility of this biomarker is limited by its cost and invasiveness, particularly if large numbers of mice are to be screened. This led us to investigate if assay of urine might serve as a simple, inexpensive, noninvasive means of PSS diagnosis. Metabolome profiling uncovered that Krebs cycle intermediates, that is, citrate, α-ketoglutarate, and fumarate, were strikingly and distinctly elevated in the urine of PSS mice. We leveraged the iron-chelating and pH-lowering properties of such metabolites as the basis for 3 urine-based PSS screening tests: urinary iron-chelation assay, pH strip test, and phenol red assay. Our findings demonstrate the feasibility of using these colorimetric assays, whereby their readout can be assessed by direct observation, to diagnose PSS in an inexpensive, rapid, and noninvasive manner. Application of our urinary PSS screening protocols can aid biomedical research by enabling stratification of PSS mice, which, at present, likely confound numerous ongoing studies.
Collapse
Affiliation(s)
- Beng San Yeoh
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Mrunmayee R Kandalgaonkar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Islam Osman
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Yeoh BS, Saha P, Golonka RM, Zou J, Petrick JL, Abokor AA, Xiao X, Bovilla VR, Bretin ACA, Rivera-Esteban J, Parisi D, Florio AA, Weinstein SJ, Albanes D, Freeman GJ, Gohara AF, Ciudin A, Pericàs JM, Joe B, Schwabe RF, McGlynn KA, Gewirtz AT, Vijay-Kumar M. Enterohepatic Shunt-Driven Cholemia Predisposes to Liver Cancer. Gastroenterology 2022; 163:1658-1671.e16. [PMID: 35988658 PMCID: PMC9691575 DOI: 10.1053/j.gastro.2022.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Pathogenesis of hepatocellular carcinoma (HCC), which kills millions annually, is poorly understood. Identification of risk factors and modifiable determinants and mechanistic understanding of how they impact HCC are urgently needed. METHODS We sought early prognostic indicators of HCC in C57BL/6 mice, which we found were prone to developing this disease when fed a fermentable fiber-enriched diet. Such markers were used to phenotype and interrogate stages of HCC development. Their human relevance was tested using serum collected prospectively from an HCC/case-control cohort. RESULTS HCC proneness in mice was dictated by the presence of congenitally present portosystemic shunt (PSS), which resulted in markedly elevated serum bile acids (BAs). Approximately 10% of mice from various sources exhibited PSS/cholemia, but lacked an overt phenotype when fed standard chow. However, PSS/cholemic mice fed compositionally defined diets, developed BA- and cyclooxygenase-dependent liver injury, which was exacerbated and uniformly progressed to HCC when diets were enriched with the fermentable fiber inulin. Such progression to cholestatic HCC associated with exacerbated cholemia and an immunosuppressive milieu, both of which were required in that HCC was prevented by impeding BA biosynthesis or neutralizing interleukin-10 or programmed death protein 1. Analysis of human sera revealed that elevated BA was associated with future development of HCC. CONCLUSIONS PSS is relatively common in C57BL/6 mice and causes silent cholemia, which predisposes to liver injury and HCC, particularly when fed a fermentable fiber-enriched diet. Incidence of silent PSS/cholemia in humans awaits investigation. Regardless, measuring serum BA may aid HCC risk assessment, potentially alerting select individuals to consider dietary or BA interventions.
Collapse
Affiliation(s)
- Beng San Yeoh
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M Golonka
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | - Ahmed A Abokor
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xia Xiao
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Venugopal R Bovilla
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Alexis C A Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Jesús Rivera-Esteban
- Liver Unit, Department of Internal Medicine, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Andrea A Florio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gordon J Freeman
- Department of Medical Oncology, Harvard Medical School, Boston, Massachusetts
| | - Amira F Gohara
- Department of Pathology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan M Pericàs
- Liver Unit, Department of Internal Medicine, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Bina Joe
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Robert F Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
| |
Collapse
|
5
|
Gallage S, Avila JEB, Ramadori P, Focaccia E, Rahbari M, Ali A, Malek NP, Anstee QM, Heikenwalder M. A researcher's guide to preclinical mouse NASH models. Nat Metab 2022; 4:1632-1649. [PMID: 36539621 DOI: 10.1038/s42255-022-00700-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.
Collapse
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nisar P Malek
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Quentin M Anstee
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
6
|
Ronda OAHO, Bloks VW, De Boer JF, Kuipers F, Verkade HJ. Response to Spontaneous Cholemia in C57BL/6 Mice Predisposes to Liver Cancer in NASH. Cell Mol Gastroenterol Hepatol 2022; 13:1590. [PMID: 35167818 PMCID: PMC9043293 DOI: 10.1016/j.jcmgh.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Onne A H O Ronda
- Research Laboratorium Pediatrics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W Bloks
- Research Laboratorium Pediatrics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Freark De Boer
- Research Laboratorium Pediatrics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Folkert Kuipers
- Research Laboratorium Pediatrics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
| | - Henkjan J Verkade
- Research Laboratorium Pediatrics, Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
7
|
Gallage S, Ali A, Barragan Avila JE, Heikenwalder M. Reply. Cell Mol Gastroenterol Hepatol 2022; 13:1590-1591. [PMID: 35167819 PMCID: PMC9043295 DOI: 10.1016/j.jcmgh.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | | | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
8
|
Feng H, Hu Y, Zhou S, Lu Y. Farnesoid X receptor contributes to oleanolic acid‐induced cholestatic liver injury in mice. J Appl Toxicol 2022; 42:1323-1336. [PMID: 35128688 PMCID: PMC9546401 DOI: 10.1002/jat.4298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor involved in the metabolism of bile acid. However, the molecular signaling of FXR in bile acid homeostasis in cholestatic drug‐induced liver injury remains unclear. Oleanolic acid (OA), a natural triterpenoid, has been reported to produce evident cholestatic liver injury in mice after a long‐term use. The present study aimed to investigate the role of FXR in OA‐induced cholestatic liver injury in mice using C57BL/6J (WT) mice and FXR knockout (FXR−/−) mice. The results showed that a significant alleviation in OA‐induced cholestatic liver injury was observed in FXR−/− mice as evidenced by decreases in serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase as well as reduced hepatocyte necrosis. UPLC‐MS analysis of bile acids revealed that the contents of bile acids decreased significantly in liver and serum, while increased in the bile in FXR−/− mice compared with in WT mice. In addition, the mRNA expressions of hepatic transporter Bsep, bile acid synthesis enzymes Bacs and Baat, and bile acids detoxifying enzymes Cyp3a11, Cyp2b10, Ephx1, Ugt1a1, and Ugt2b5 were increased in liver tissues of FXR−/− mice treated with OA. Furthermore, the expression of membrane protein BSEP was significantly higher in livers of FXR−/− mice compared with WT mice treated with OA. These results demonstrate that knockout of FXR may alleviate OA‐induced cholestatic liver injury in mice by decreasing accumulation of bile acids both in the liver and serum, increasing the export of bile acids via the bile, and by upregulation of bile acids detoxification enzymes. Oleanolic acid (OA) induces cholestatic liver injury in mice after a long‐term use. Here we demonstrated a significant alleviation in OA‐induced cholestatic liver injury in Farnesoid X receptor (FXR) knockout (FXR‐/‐) mice as compared to the wildtype mice. Downregulation of FXR decreased contents of bile acids in liver and serum, while increased the contents in the bile. In addition, the expression of membrane protein BSEP was significantly higher in livers of FXR‐/‐ mice compared to WT mice treated with OA.
Collapse
Affiliation(s)
- Hong Feng
- People’s Hospital of Zunyi City Bo Zhou District Zunyi Guizhou China
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of the Ministry of Education and Joint International Research Laboratory of Ethnomedicine of the Ministry of Education Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|