1
|
Veugen JMJ, Schoenmakers T, van Loo IHM, Haagmans BL, Leers MPG, Lamers MM, Lucchesi M, van Bussel BCT, van Mook WNKA, Nuijts RMMA, Savelkoul PHM, Dickman MM, Wolffs PFG. Advancing COVID-19 diagnostics: rapid detection of intact SARS-CoV-2 using viability RT-PCR assay. Microbiol Spectr 2024; 12:e0016024. [PMID: 39037224 PMCID: PMC11370235 DOI: 10.1128/spectrum.00160-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Commonly used methods for both clinical diagnosis of SARS-CoV-2 infection and management of infected patients involve the detection of viral RNA, but the presence of infectious virus particles is unknown. Viability PCR (v-PCR) uses a photoreactive dye to bind non-infectious RNA, ideally resulting in the detection of RNA only from intact virions. This study aimed to develop and validate a rapid v-PCR assay for distinguishing intact and compromised SARS-CoV-2. Propidium monoazide (PMAxx) was used as a photoreactive dye. Mixtures with decreasing percentages of intact SARS-CoV-2 (from 100% to 0%) were prepared from SARS-CoV-2 virus stock and a clinical sample. Each sample was divided into a PMAxx-treated part and a non-PMAxx-treated part. Reverse transcription-PCR (RT-PCR) using an in-house developed SARS-CoV-2 viability assay was then applied to both sample sets. The difference in intact SARS-CoV-2 was determined by subtracting the cycle threshold (Ct) value of the PMAxx-treated sample from the non-PMAxx-treated sample. Mixtures with decreasing concentrations of intact SARS-CoV-2 showed increasingly lower delta Ct values as the percentage of intact SARS-CoV-2 decreased, as expected. This relationship was observed in both high and low viral load samples prepared from cultured SARS-CoV-2 virus stock, as well as for a clinical sample prepared directly from a SARS-CoV-2 positive nasopharyngeal swab. In this study, a rapid v-PCR assay has been validated that can distinguish intact from compromised SARS-CoV-2. The presence of intact virus particles, as determined by v-PCR, may indicate SARS-CoV-2 infectiousness. IMPORTANCE This study developed a novel method that can help determine whether someone who has been diagnosed with coronavirus disease 2019 (COVID-19) is still capable of spreading the virus to others. Current tests only detect the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, but cannot tell whether the particles are still intact and can thus infect cells. The researchers used a dye that selectively blocks the detection of damaged virions and free RNA. They showed that this viability PCR reliably distinguishes intact SARS-CoV-2 capable of infecting from damaged SARS-CoV-2 or free RNA in both cultured virus samples and a clinical sample. Being able to quickly assess contagiousness has important implications for contact tracing and safely ending isolation precautions. This viability PCR technique provides a simple way to obtain valuable information, beyond just positive or negative test results, about the actual risk someone poses of transmitting SARS-CoV-2 through the air or surfaces they come into contact with.
Collapse
Affiliation(s)
- Judith M. J. Veugen
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Tom Schoenmakers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| | - Inge H. M. van Loo
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Bart L. Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathie P. G. Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen/Heerlen, the Netherlands
- Faculty of Science, Environmental Sciences, Open Universiteit, Heerlen, the Netherlands
| | - Mart M. Lamers
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mayk Lucchesi
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Bas C. T. van Bussel
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Walther N. K. A. van Mook
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
- School of Health Professions Education (SHE), Maastricht University, Maastricht, the Netherlands
| | - Rudy M. M. A. Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
- Department of Ophthalmology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Paul H. M. Savelkoul
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mor M. Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Petra F. G. Wolffs
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Center, Maastricht, the Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
2
|
Zarębska-Michaluk D, Flisiak R, Janczewska E, Berak H, Mazur W, Janocha-Litwin J, Krygier R, Dobracka B, Jaroszewicz J, Parfieniuk-Kowerda A, Dobrowolska K, Rzymski P. Does a detectable HCV RNA at the end of DAA therapy herald treatment failure? Antiviral Res 2023; 220:105742. [PMID: 37944825 DOI: 10.1016/j.antiviral.2023.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND & AIMS The study aimed to assess the phenomenon of achieving sustained virologic response (SVR) in patients with detectable ribonucleic acid (RNA) of hepatitis C virus (HCV) at the end of treatment (ET) with direct-acting antivirals (DAA), find how this is affected by the type of regimen, and how patients experiencing this differed from non-responders with detectable HCV RNA at the ET. METHODS The study included all consecutive patients with detectable HCV RNA at the ET selected from the EpiTer-2 database, a retrospective national multicentre project evaluating antiviral treatment in HCV-infected patients in 2015-2023. RESULTS Of the 16106 patients treated with IFN-free regimens with available HCV RNA assessment at the ET and at follow-up 12 weeks after treatment completion (FU), 1253 (7.8%) had detectable HCV RNA at the ET, and 1120 of them (89%) finally achieved SVR. This phenomenon was significantly more frequent in pangenotypic regimens, 10.3% vs. 4.7% in genotype-specific options (p < 0.001), and the highest proportion was documented for glecaprevir/pibrentasvir (13.7%), and velpatasvir/sofosbuvir ± ribavirin (6.9%). Patients ET + FU- treated with these two pangenotypic regimens (n = 668) had less advanced liver disease, were less frequently infected with genotype (GT) 3, and were significantly more likely to be treatment-naïve than 61 non-responders. CONCLUSIONS We documented 7.8% rate of patients with detectable HCV RNA at the ET, of whom 89% subsequently achieved SVR, significantly more frequently in the population treated with pangenotypic regimens. Less severe liver disease, more often GT3 infection, and a higher percentage of treatment-naive patients distinguished this group from non-responders.
Collapse
Affiliation(s)
- Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317, Kielce, Poland.
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540, Białystok, Poland
| | - Ewa Janczewska
- Department of Basic Medical Sciences, School of Public Health in Bytom, Medical University of Silesia, 40-055, Katowice, Poland
| | - Hanna Berak
- Outpatient Clinic, Hospital for Infectious Diseases in Warsaw, 01-201, Warsaw, Poland
| | - Włodzimierz Mazur
- Clinical Department of Infectious Diseases in Chorzów, Medical University of Silesia, 40-055, Katowice, Poland
| | - Justyna Janocha-Litwin
- Department of Infectious Diseases and Hepatology, Wrocław Medical University, 50-367, Wrocław, Poland
| | - Rafał Krygier
- Infectious Diseases and Hepatology Outpatient Clinic NZOZ "Gemini", 62-571, Żychlin, Poland
| | | | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, 40-055, Katowice, Poland
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540, Białystok, Poland
| | | | - Piotr Rzymski
- Department of Environmental Medicine, Poznań University of Medical Sciences, 60-806, Poznań, Poland
| |
Collapse
|
3
|
Rausch F, Tanneberger F, Abd El Wahed A, Truyen U. Validation of the efficacy of air purifiers using molecular techniques. PLoS One 2023; 18:e0280243. [PMID: 36622844 PMCID: PMC9829175 DOI: 10.1371/journal.pone.0280243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
The importance of air purifiers has increased in recent years, especially with the "coronavirus disease 2019" pandemic. The efficacy of air purifiers is usually determined under laboratory conditions before widespread application. The standard procedure for testing depends on virus cultivation and titration on cell culture. This, however, requires several days to deliver results. The aim of this study was to establish a rapid molecular assay which can differentiate between intact infectious and distorted non-infectious virus particles. Feline Coronavirus was selected as model for screening. First the samples were pretreated with enzymes (universal nuclease and RNase cocktail enzyme mixture) or viability dye (propidium monoazide) to eliminate any free nucleic acids. The ribonucleic acid (RNA) from intact virus was released via magnetic beads-based extraction, then the amount of the RNA was determined using real-time reverse transcription polymerase chain reaction (RT-PCR) or reverse transcription recombinase-aided amplification (RT-RAA). All results were compared to the infectivity assay based on the calculation of the 50% tissue culture infectious dose (TCID50). The nuclease has eliminated 100% of the free Feline Coronavirus RNA, while propidium monoazide underperformed (2.3-fold decrease in free RNA). Both RT-RAA and real-time RT-PCR produced similar results to the infectivity assay on cell culture with limit of detection of 102 TCID50/mL. Two UV-C air purifiers with prosperities of 100% inactivation of the viruses were used to validate the established procedure. Both real-time RT-PCR and RT-RAA were able to differentiate between intact virus particles and free RNA. To conclude, this study revealed a promising rapid method to validate the efficacy of air purifiers by combining enzymatic pretreatment and molecular assays.
Collapse
Affiliation(s)
- Finja Rausch
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Franziska Tanneberger
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Ahmed Abd El Wahed
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| | - Uwe Truyen
- Faculty of Veterinary Medicine, Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Chen YY, Wu CL, Hsu CW, Wang CH, Su CR, Huang CJ, Chen HR, Chau LK, Wang SC. Trace Determination of Grouper Nervous Necrosis Virus in Contaminated Larvae and Pond Water Samples Using Label-Free Fiber Optic Nanoplasmonic Biosensor. BIOSENSORS 2022; 12:907. [PMID: 36291043 PMCID: PMC9599950 DOI: 10.3390/bios12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
We developed a fast (<20 min), label-free fiber optic particle plasmon resonance (FOPPR) immunosensing method to detect nervous necrosis virus (NNV), which often infects high-value economic aquatic species, such as grouper. Using spiked NNV particles in a phosphate buffer as samples, the standard calibration curve obtained was linear (R2 = 0.99) and the limit of detection (LOD) achieved was 2.75 × 104 TCID50/mL, which is superior to that obtained using enzyme-linked immunosorbent assay (ELISA). By using an enhancement method called fiber optic nanogold-linked immunosorbent assay (FONLISA), the LOD can be further improved to <1 TCID50/mL, which is comparable to that found by the conventional qPCR method. Employing the larvae homogenate samples of NNV-infected grouper, the results obtained by the FOPPR biosensor agree with those obtained by the quantitative polymerase chain reaction (qPCR) method. We also examined pond water samples from an infected container in an indoor aquaculture facility. The lowest detectable level of NNV coat protein was found to be 0.17 μg/mL, which is one order lower than the LOD reported by ELISA. Therefore, we demonstrated the potential of the FOPPR biosensor as an outbreak surveillance tool, which is able to give warning indication even when the trend of larvae death toll increment is still not clear.
Collapse
Affiliation(s)
- Yuan-Yu Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chih-Lu Wu
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chia-Wei Hsu
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chih-Hui Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chung-Rui Su
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, NCU-Covestro Research Center, National Central University, Taoyuan 32001, Taiwan
| | - Hau-Ren Chen
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, Taiwan
- Center for Nano Bio-Detection, National Chung Cheng University, Chia-Yi 621, Taiwan
| |
Collapse
|
5
|
Matos M, Bilic I, Palmieri N, Mitsch P, Sommer F, Tvarogová J, Liebhart D, Hess M. Epidemic of cutaneous fowlpox in a naïve population of chickens and turkeys in Austria: Detailed phylogenetic analysis indicates co-evolution of fowlpox virus with reticuloendotheliosis virus. Transbound Emerg Dis 2022; 69:2913-2923. [PMID: 34974640 PMCID: PMC9787674 DOI: 10.1111/tbed.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
Cutaneous fowlpox is a disease of chickens and turkeys caused by the fowlpox virus (FWPV), characterized by the development of proliferative lesions and scabs on unfeathered areas. FWPVs regularly carry an integrated, active copy of the reticuloendotheliosis virus (REV), and it has been hypothesized that such FWPVs are more problematic in the field. Extensive outbreaks are usually observed in tropical and sub-tropical climates, where biting insects are more difficult to control. Here, we report an epidemic of 65 cutaneous fowlpox cases in Austria in layer chickens (91% of the cases) and broiler breeders and turkeys, all of them unvaccinated against the disease, from October 2018 to February 2020. The field data revealed appearance in flocks of different sizes ranging from less than 5000 birds up to more than 20,000 animals, with the majority raised indoors in a barn system. The clinical presentation was characterized by typical epithelial lesions on the head of the affected birds, with an average decrease of 6% in egg production and an average weekly mortality of 1.2% being observed in the flocks. A real-time multiplex polymerase chain reaction (PCR) confirmed the presence of FWPV-REV DNA, not only in the lesions but also in the environmental dust from the poultry houses. The integration of the REV provirus into the FWPV genome was confirmed by PCR, and revealed different FWPV genome populations carrying either the REV long terminal repeats (LTRs) or the full-length REV genome, reiterating the instability of the inserted REV. Two selected samples were fully sequenced by next generation sequencing (NGS), and the whole genome phylogenetic analysis revealed a regional clustering of the FWPV genomes. The extensive nature of these outbreaks in host populations naïve for the virus is a remarkable feature of the present report, highlighting new challenges associated with FWPV infections that need to be considered.
Collapse
Affiliation(s)
- Miguel Matos
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Ivana Bilic
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Nicola Palmieri
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | | | | | - Jana Tvarogová
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Dieter Liebhart
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| | - Michael Hess
- Clinic for Poultry and Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
6
|
Silva PG, Branco PTBS, Soares RRG, Mesquita JR, Sousa SIV. SARS-CoV-2 air sampling: A systematic review on the methodologies for detection and infectivity. INDOOR AIR 2022; 32:e13083. [PMID: 36040285 PMCID: PMC9538005 DOI: 10.1111/ina.13083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
This systematic review aims to present an overview of the current aerosol sampling methods (and equipment) being used to investigate the presence of SARS-CoV-2 in the air, along with the main parameters reported in the studies that are essential to analyze the advantages and disadvantages of each method and perspectives for future research regarding this mode of transmission. A systematic literature review was performed on PubMed/MEDLINE, Web of Science, and Scopus to assess the current air sampling methodologies being applied to SARS-CoV-2. Most of the studies took place in indoor environments and healthcare settings and included air and environmental sampling. The collection mechanisms used were impinger, cyclone, impactor, filters, water-based condensation, and passive sampling. Most of the reviewed studies used RT-PCR to test the presence of SARS-CoV-2 RNA in the collected samples. SARS-CoV-2 RNA was detected with all collection mechanisms. From the studies detecting the presence of SARS-CoV-2 RNA, fourteen assessed infectivity. Five studies detected viable viruses using impactor, water-based condensation, and cyclone collection mechanisms. There is a need for a standardized protocol for sampling SARS-CoV-2 in air, which should also account for other influencing parameters, including air exchange ratio in the room sampled, relative humidity, temperature, and lighting conditions.
Collapse
Affiliation(s)
- Priscilla G. Silva
- Laboratory for Integrative and Translational Research in Population Health (ITR)PortoPortugal
- School of Medicine and Biomedical Sciences (ICBAS)University of PortoPortoPortugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
- Epidemiology Research Unit (EPI Unit), Institute of Public HealthUniversity of PortoPortoPortugal
| | - Pedro T. B. S. Branco
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
| | - Ruben R. G. Soares
- Department of Biochemistry and Biophysics, Science for Life LaboratoryStockholm UniversitySolnaSweden
- Division of Nanobiotechnology, Department of Protein Science, Science for Life LaboratoryKTH Royal Institute of TechnologySolnaSweden
| | - João R. Mesquita
- Laboratory for Integrative and Translational Research in Population Health (ITR)PortoPortugal
- Epidemiology Research Unit (EPI Unit), Institute of Public HealthUniversity of PortoPortoPortugal
| | - Sofia I. V. Sousa
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of EngineeringUniversity of PortoPortoPortugal
| |
Collapse
|
7
|
Weinberger S, Steininger C. Reliable quantification of Cytomegalovirus DNAemia in Letermovir treated patients. Antiviral Res 2022; 201:105299. [PMID: 35354065 DOI: 10.1016/j.antiviral.2022.105299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
Polymerase chain reaction (PCR) based methods are a fast and sensitive approach to detect and monitor viral load in Cytomegalovirus (CMV) patients. Letermovir (LMV) acts at a late stage during the CMV replication cycle and does not inhibit CMV DNA replication per se. Therefore, quantitative nucleic acid amplification testing might lead to the overestimation of viral load in patients treated with LMV and underestimate treatment success. To study this discrepancy, we treated infected cells with LMV or Ganciclovir (GCV) and compared viral progeny DNA levels. Prior to nucleic acid extraction and qPCR measurements we pretreated cell lysates and cell culture supernatants from infected cells with DNase I. This step assumes the degradation of DNA which is not protected from a viral capsid. LMV treatment did not reduce genomic copies (GC) in samples from whole cell lysates compared to samples treated with GCV. DNase treatment prior to DNA extraction, decreased GC in the LMV treated group to comparable levels as seen in the GCV group. In cell culture supernatants, LMV or GCV treatment led to an equivalent reduction of CMV GC. In this case, DNase treatment exerted a negligible effect on both groups. We conclude that the accumulation of concatemeric DNA within cells seems to be a confounding variable when monitoring LMV efficacy via qPCR. However, qPCR shows to be a reliable method to evaluate antiviral efficacy of LMV in cell free specimens. These results have strong clinical implications for the monitoring of CMV therapy during LMV treatment.
Collapse
Affiliation(s)
- Stefan Weinberger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christoph Steininger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Karl Landsteiner Institute of Microbiome Research, St. Pölten, Austria.
| |
Collapse
|
8
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D, Martin-Latil S, Díaz-Reolid A, Girón-Guzmán I, Allende A, Sánchez G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 2021; 11:18120. [PMID: 34518622 PMCID: PMC8438079 DOI: 10.1038/s41598-021-97700-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
9
|
Cuevas-Ferrando E, Randazzo W, Pérez-Cataluña A, Falcó I, Navarro D, Martin-Latil S, Díaz-Reolid A, Girón-Guzmán I, Allende A, Sánchez G. Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples. Sci Rep 2021; 11:18120. [PMID: 34518622 DOI: 10.1101/2021.03.22.21253818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023] Open
Abstract
Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Sandra Martin-Latil
- ANSES Laboratory for Food Safety, Université Paris-Est, 94700, Maisons-Alfort, France
| | - Azahara Díaz-Reolid
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Inés Girón-Guzmán
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100, Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
10
|
Ahaduzzaman M, Milan L, Morton CL, Gerber PF, Walkden-Brown SW. Characterization of poultry house dust using chemometrics and scanning electron microscopy imaging. Poult Sci 2021; 100:101188. [PMID: 34089932 PMCID: PMC8182433 DOI: 10.1016/j.psj.2021.101188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
Poultry house dust is composed of fine particles which likely originate from a diverse range of materials such as feed, litter, excreta, and feathers. Little is known about the contribution of these sources to broiler house airborne dust so the present study was designed to identify the relative contributions of these sources. Samples of feed, excreta, feather, and bedding, known mixtures of these and settled dust from 28 broiler chicken flocks were tested for the concentration of 18 chemical elements. A chemometrics approach (the application of multivariate statistical techniques to chemical analysis data) was used to identify the primary source material in broiler chicken house dust samples. Scanning electron microscopy (SEM) was also used to analyze dust sample particulates based on examination of source materials. Excreta was found to be the main component of broiler chicken house dust, both by SEM and chemometric analysis. SEM of experimental flock dust between 7 and 35 days of age (d) revealed that the contribution of excreta to dust increased with age from 60% at 7 d to 95% at 28 d (P < 0.001). The proportion of bedding and feed in dust declined with age while the contribution of feather material remained low throughout. This study demonstrates that excreta provides the bulk of the material in poultry dust samples with bedding material, feed and feather material providing lower proportions. The relative contributions of these materials to dust varies with age of birds at dust collection. Additional research is required to determine the health and diagnostic implications of this variation.
Collapse
Affiliation(s)
- Md Ahaduzzaman
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, 4225, Bangladesh.
| | - Luke Milan
- Earth Sciences, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Christine L Morton
- Statistics, School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
11
|
Yegoraw AA, Assen AM, Gerber PF, Walkden-Brown SW. Transmission of infectious laryngotracheitis virus vaccine and field strains: the role of degree of contact and transmission by whole blood, plasma and poultry dust. Vet Res 2021; 52:91. [PMID: 34158102 PMCID: PMC8220770 DOI: 10.1186/s13567-021-00959-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Understanding the mechanisms of transmission of infectious laryngotracheitis virus (ILTV) is critical to proper control as both vaccine and wild-type strains circulate within chicken flocks with potential adverse consequences. The relative efficiency of transmission by direct contact between chickens and airborne transmission has not been investigated. Furthermore, relatively high levels of ILTV DNA have been detected in poultry dust and blood but the infectivity of these is unknown. In this study, comparison of in-contact and airborne transmission of two vaccine and one field strain of ILTV revealed that all transmitted to 100% of in-contact birds by 6 days post-exposure (dpe). Airborne transmission without contact resulted in 100% transmission by 14 and 17 dpe for the wild-type and Serva vaccine virus but only 27% transmission by 21 dpe for the A20 vaccine virus. The infectivity of dust or extracts of dust and blood or plasma from infected chickens at various stages of infection was assessed by inoculation into susceptible chickens. There was no transmission by any of these materials. In conclusion, direct contact facilitated efficient ILTV transmission but the virus was unable to be transmitted by dust from infected chickens suggestive of a limited role in the epidemiology of ILTV.
Collapse
Affiliation(s)
- Addisu A Yegoraw
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.
- School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia.
| | - Awol M Assen
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
12
|
Wei X, Ge T, Wu C, Wang S, Mason-Jones K, Li Y, Zhu Z, Hu Y, Liang C, Shen J, Wu J, Kuzyakov Y. T4-like Phages Reveal the Potential Role of Viruses in Soil Organic Matter Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6440-6448. [PMID: 33852292 DOI: 10.1021/acs.est.0c06014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Viruses are the most abundant biological entities in the world, but their ecological functions in soil are virtually unknown. We hypothesized that greater abundance of T4-like phages will increase bacterial death and thereby suppress soil organic carbon (SOC) mineralization. A range of phage and bacterial abundances were established in sterilized soil by reinoculation with 10-3 and 10-6 dilutions of suspensions of unsterilized soil. The total and viable 16S rRNA gene abundance (a universal marker for bacteria) was measured by qPCR to determine bacterial abundance, with propidium monoazide (PMA) preapplication to eliminate DNA from non-viable cells. Abundance of the g23 marker gene was used to quantify T4-like phages. A close negative correlation between g23 abundance and viable 16S rRNA gene abundance was observed. High abundance of g23 led to lower viable ratios for bacteria, which suggested that phages drove microbial necromass production. The CO2 efflux from soil increased with bacterial abundance but decreased with higher abundance of T4-like phages. Elimination of extracellular DNA by PMA strengthened the relationship between CO2 efflux and bacterial abundance, suggesting that SOC mineralization by bacteria is strongly reduced by the T4-like phages. A random forest model revealed that abundance of T4-like phages and the abundance ratio of T4-like phages to bacteria are better predictors of SOC mineralization (measured as CO2 efflux) than bacterial abundance. Our study provides experimental evidence of phages' role in organic matter turnover in soil: they can retard SOC decomposition but accelerate bacterial turnover.
Collapse
Affiliation(s)
- Xiaomeng Wei
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Tida Ge
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Chuanfa Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 106708, The Netherlands
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhenke Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yajun Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - JianLin Shen
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Goettingen 37073, Germany
- Agro-Technological Institute, RUDN University, 117198 Moscow, Russia
| |
Collapse
|
13
|
Assen AM, Walkden-Brown SW, Stillman M, Alfirevich S, Gerber PF. Comparison of tracheal and choanal cleft swabs and poultry dust samples for detection of Newcastle disease virus and infectious bronchitis virus genome in vaccinated meat chicken flocks. PLoS One 2021; 16:e0247729. [PMID: 33861761 PMCID: PMC8051787 DOI: 10.1371/journal.pone.0247729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023] Open
Abstract
This study assessed different methods (tracheal and choanal cleft swabs from individual birds, and poultry dust as a population level measure) to evaluate the shedding kinetics of infectious bronchitis virus (IBV) and Newcastle disease virus (NDV) genome in meat chicken flocks after spray vaccination at hatchery. Dust samples and tracheal and choanal cleft swabs were collected from four meat chicken flocks at 10, 14, 21 and 31 days post vaccination (dpv) and tested for IBV and NDV genome copies (GC) by reverse transcriptase (RT)-PCR. IBV and NDV GC were detected in all sample types throughout the study period. Detection rates for choanal cleft and tracheal swabs were comparable, with moderate and fair agreement between sample types for IBV (McNemar's = 0.27, kappa = 0.44) and NDV (McNemar's = 0.09; kappa = 0.31) GC respectively. There was no significant association for IBV GC in swabs and dust samples (R2 = 0.15, P = 0.13) but NDV detection rates and viral load in swabs were strongly associated with NDV GC in dust samples (R2 = 0.86 and R2 = 0.90, P<0.001). There was no difference in IBV and NDV GC in dust samples collected from different locations within a poultry house. In conclusion, dust samples collected from any location within poultry house show promise for monitoring IBV and NDV GC in meat chickens at a population level and choanal cleft swabs can be used for detection of IBV and NDV GC instead of tracheal swabs in individual birds.
Collapse
Affiliation(s)
- Awol M. Assen
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
| | - Stephen W. Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Mark Stillman
- Baiada Poultry Pty Limited, New South Wales, Australia
| | | | - Priscilla F. Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
- * E-mail:
| |
Collapse
|
14
|
Tran TT, Nazir S, Yegoraw AA, Assen AM, Walkden-Brown SW, Gerber PF. Detection of infectious laryngotracheitis virus (ILTV) in tissues and blood fractions from experimentally infected chickens using PCR and immunostaining analyses. Res Vet Sci 2020; 134:64-68. [PMID: 33310555 DOI: 10.1016/j.rvsc.2020.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The ability of infectious laryngotracheitis virus (ILTV) to replicate in organs outside of the upper respiratory tract and conjunctiva associated-lymphoid tissues is still not well understood. This study investigated the tissue distribution of an Australian field strain of ILTV (class 9) on birds experimentally inoculated via eye-drop at 7 days of age by using quantitative PCR (qPCR) and immunohistochemistry. Tissues including conjunctiva, caecal tonsil, kidney, liver, lung, spleen, thymus, trachea and blood were collected from sham-inoculated (control group; n = 2) and ILTV-inoculated (n = 8) birds at 7 days post-inoculation (dpi). Blood was collected from 13 infected birds at 14 dpi and fractionated using ficoll-paque. At 7 dpi, the highest detection rate and genomic copies (GC) were in conjunctiva (8/8; 8.08 ± 0.48 log10 GC/mg) followed by trachea (8/8; 4.64 ± 0.48) and thymus (8/8; 4.52 ± 0.48), kidney (8/8; 3.97 ± 0.48), lung (8/8; 3.65 ± 0.48), spleen (8/8; 3.55 ± 0.48), liver (8/8; 3.51 ± 0.48), caecal tonsil (7/8; 3.76 ± 0.48) and plasma (4/8; 2.40 ± 0.48 log10 GC/ml). ILTV antigen was only detected in conjunctiva (7/8), trachea (6/8) and lung (4/8) samples. At 14 dpi, ILTV detection rate and genomic copies in buffy coat cells were 12/13 and 2.86 ± 0.39 log10 GC/mg, respectively while those of plasma were 11/13 and 4.29 ± 0.39 log10 GC/ml and red blood cell were 3/13 and 0.36 ± 0.39 log10 GC/mg. In conclusion, ILTV DNA was detected in a wide range of tissues and blood fractions but ILTV antigen was only detected in respiratory organs and conjunctiva.
Collapse
Affiliation(s)
- Thanh T Tran
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Viet Nam
| | - Shahid Nazir
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Addisu A Yegoraw
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Awol M Assen
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
| | - Stephen W Walkden-Brown
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Priscilla F Gerber
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia.
| |
Collapse
|
15
|
Nazir S, Yegoraw AA, Charlesworth RPG, Williamson S, Sharpe S, Walkden-Brown SW, Gerber PF. Marked differences in virulence of three Australian field isolates of infectious laryngotracheitis virus in meat and layer chickens. Avian Pathol 2020; 49:600-610. [PMID: 32720515 DOI: 10.1080/03079457.2020.1801987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objectives of this study were to compare the virulence of contemporary infectious laryngotracheitis virus (ILTV) field isolates of classes 9, 10, and 14 in meat and layer chickens, and to evaluate cloacal and oropharyngeal swabs and dust as sample types for ILTV detection. A total of 211 chickens were divided into groups and inoculated with ILTV class 9, 10, or 14, or sham-inoculated via eye drop at 15 or 22 days of age. Chickens were euthanized at 5 and 9 days post-infection. Virulence was assessed by scoring of clinical signs (conjunctivitis, dyspnoea, and demeanour), ILTV genomic copies (GC) in oropharyngeal and cloacal swabs, mortality and microscopic lesions in conjunctiva and trachea. Class 14 caused subclinical infection, while inoculation with class 9 or class 10 resulted in severe clinical signs and microscopic lesions. Compared to class 14 (2.25 ± 0.36 log10 GC), higher viral load was observed in oropharyngeal swabs of classes 9 (7.86 ± 0.48) and 10 (7.53 ± 0.36), with a higher proportion of positive oropharyngeal and cloacal swabs in the latter groups (P < 0.0001). Viral detection in cloacal swabs was delayed at early stages of infection compared to oropharyngeal swabs. Dust samples from class 9- and class 10-inoculated groups showed a trend towards higher GC than that of class 14. Overall, clinical scores, mortality, viral load, and microscopic lesions were similar for classes 9 and 10, but class 9 caused more severe disease in layer chickens than meat chickens. In summary, ILTV classes 9 and 10 exhibited severe virulence, while class 14 exhibited very mild virulence. RESEARCH HIGHLIGHTS Wide variation in the virulence of three field Australian field ILTV strains. Class 9 and class 10 strains were highly virulent, while class 14 was mildly virulent. The highly virulent strains were associated with significantly higher viral genome copies in various sample types than the mildly virulent strain.
Collapse
Affiliation(s)
- Shahid Nazir
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Addisu A Yegoraw
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia.,School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | | | | | - Sue Sharpe
- Birling Avian Laboratories, Bringelly, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
16
|
Yegoraw AA, Nazir S, Gerber PF, Walkden-Brown SW. Airborne Transmission of Vaccinal and Wild Type Infectious Laryngotracheitis Virus and Noninfectivity of Extracts of Excreta from Infected Chickens. Avian Dis 2020; 65:30-39. [PMID: 34339119 DOI: 10.1637/aviandiseases-d-20-00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 11/05/2022]
Abstract
Infectious laryngotracheitis virus (ILTV) is thought to exit the host in respiratory aerosols and enter by inhalation of these. High levels of ILTV DNA have been detected in excreta, raising the possibility of alternative routes of shedding from the host. However, it is not known whether or not the ILTV DNA in excreta represents infective virus. This study investigated transmission of wild type and vaccinal ILTV from infected to susceptible commercial meat chickens. Airborne- and excreta-mediated transmission of two field isolates of ILTV (Classes 9 and 10) and three vaccine strains (SA2, A20, and Serva) were tested. To test airborne transmission, air from isolators containing infected birds was ducted through a paired isolator containing uninfected chickens. To test excreta transmission, aliquots were prepared from excreta containing a high level of ILTV DNA within the first week after infection. Chicks were infected bilaterally by eye drop. Clinical signs were monitored daily and choanal cleft swab samples for ILTV detection by quantitative PCR were collected at 4, 8, 15, 22, and 28 days postinfection (DPI) in the airborne transmission study and at 7 and 14 DPI from the excreta transmission studies. There was no transmission of ILTV from excreta, suggesting that ILTV is inactivated during passage through the gut. All strains of ILTV were transmitted by the airborne route but only to a limited extent for the vaccine viruses. The field viruses induced clinical signs, pathology, and greatly elevated ILTV genome copies in swabs. In summary, these findings confirm the suspected airborne transmission of ILTV, demonstrate differential transmission potential between wild type and vaccine strains by this route, and indicate that excreta is unlikely to be important in the transmission of ILTV and the epidemiology of ILT.
Collapse
Affiliation(s)
- Addisu Awukew Yegoraw
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia, .,School of Veterinary Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Shahid Nazir
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Stephen W Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|