1
|
Bergagna L, Lovrich G, Riccialdelli L, Sahade R. Blue carbon storage in a sub-Antarctic marine protected area. Sci Rep 2024; 14:20642. [PMID: 39232073 PMCID: PMC11375017 DOI: 10.1038/s41598-024-71319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
High-latitude ecosystems have been overlooked in carbon budgets, which traditionally focus on mangroves, salt marshes, and seagrasses. The benthic assemblages and their Nature Contributions to People in Namuncurá - Burdwood Bank I and II, two offshore sub-Antarctic Marine Protected Areas (MPAs), are the conservation values. Here we show that the carbon reservoirs of these MPAs can be greater than those of their Antarctic counterparts, which, together with their extension, emphasize the need to maintain their protected status. Considering their total area, these MPAs stored in biomass 52,085.78 Mg C, corresponding 34,964.16 Mg to organic carbon (OC) and 17,121.62 Mg to inorganic carbon (IC). Surficial sediments stored 933,258,336 Mg C with 188,089,629 Mg of OC and 745,168,707 Mg of IC. However, when accounting for CO2 production through CaCO3 precipitation, the IC fractions decrease to 3,150.37 Mg C and 137,111,042 Mg C for biomass and sediments, respectively. We assume low sediment deposition due to the oceanic location, as direct sedimentation rates for these areas are unavailable. Most blue carbon assessments have focused solely on OC, despite the formation of CaCO3 releases CO2, decreasing net carbon storage. We compared various approaches for incorporating carbonates into carbon estimations. These results underscore the importance of including IC into carbon assessments and highlights the importance of sub-Antarctic benthic ecosystems as nature-based solutions to climate change.
Collapse
Affiliation(s)
- Lucía Bergagna
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina.
| | - Gustavo Lovrich
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
| | - Luciana Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
| | - Ricardo Sahade
- Instituto de Diversidad y Ecología Animal (IDEA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
- Facultad de Ciencias Exactas Físicas y Naturales (FCEFyN) - Universidad Nacional de Córdoba (UNC), Córdoba, Argentina.
| |
Collapse
|
2
|
Tang J, He X, Chen J, Cao W, Han T, Xu Q, Sun C. Occurrence and distribution of phycotoxins in the Antarctic Ocean. MARINE POLLUTION BULLETIN 2024; 201:116250. [PMID: 38479322 DOI: 10.1016/j.marpolbul.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Lipophilic phycotoxins (LPTs) and domoic acid (DA) in Antarctic seawater, as well as parts of the South Pacific and the Southern Indian Oceans were systematically investigated. DA and six LPTs, namely pectenotoxin-2 (PTX2), okadaic acid (OA), yessotoxin (YTX), homo-yessotoxin (h-YTX), 13-desmethyl spirolide C (SPX1), and gymnodimine (GYM), were detected. PTX2, as the dominant LPTs, was widely distributed in seawater surrounding Antarctica, whereas OA, YTX, and h-YTX were irregularly distributed across the region. The total concentration of LPTs in surface seawater ranged from 0.10 to 13.57 ng/L (mean = 2.20 ng/L). ∑LPT levels were relatively higher in the eastern sea areas of Antarctica than in the western sea areas. PTX2 was the main LPT in the vertical profiles, and the PTX2 concentration was significantly higher in the epipelagic zone than water depths below 200 m. The predominant sources of PTX2 and OA in Antarctic sea areas are likely to be Dinophysis.
Collapse
Affiliation(s)
- Jiale Tang
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xiuping He
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266071,China.
| | - Wei Cao
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tongzhu Han
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinzeng Xu
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Chengjun Sun
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Key Laboratory of Marine Eco-Environmental Science and Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
3
|
Antoni JS, Almandoz GO, Goldsmit J, Garcia MD, Flores-Melo X, Hernando MP, Schloss IR. Long-term studies on West Antarctic Peninsula phytoplankton blooms suggest range shifts between temperate and polar species. GLOBAL CHANGE BIOLOGY 2024; 30:e17238. [PMID: 38497342 DOI: 10.1111/gcb.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
The Western Antarctic Peninsula (WAP) experiences one of the highest rates of sea surface warming globally, leading to potential changes in biological communities. Long-term phytoplankton monitoring in Potter Cove (PC, King George Island, South Shetlands) from the 1990s to 2009 revealed consistently low biomass values, and sporadic blooms dominated by cold-water microplankton diatoms. However, a significant change occurred between 2010 and 2020, marked by a notable increase in intense phytoplankton blooms in the region. During this period, the presence of a nanoplankton diatom, Shionodiscus gaarderae, was documented for the first time. In some instances, this species even dominated the blooms. S. gaarderae is recognized for producing blooms in temperate waters in both hemispheres. However, its blooming in the northern Southern Ocean may suggest either a recent introduction or a range shift associated with rising temperatures in the WAP, a phenomenon previously observed in experimental studies. The presence of S. gaarderae could be viewed as a warning sign of significant changes already underway in the northern WAP plankton communities. This includes the potential replacement of microplankton diatoms by smaller nanoplankton species. This study, based on observations along the past decade, and compared to the previous 20 years, could have far-reaching implications for the structure of the Antarctic food web.
Collapse
Affiliation(s)
- Julieta S Antoni
- División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Gastón O Almandoz
- División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Jesica Goldsmit
- Maurice Lamontagne Institute, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada
- Arctic Research Division, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Québec City, Québec, Canada
| | - Maximiliano D Garcia
- CONICET, Buenos Aires, Argentina
- Agencia de Investigación Científica, Ministerio Público de La Pampa, Argentina, Santa Rosa, Argentina
| | - Ximena Flores-Melo
- Centro Austral de Investigaciones Científicas (CADIC)- CONICET, Ushuaia, Tierra del Fuego, Argentina
| | - Marcelo P Hernando
- CONICET, Buenos Aires, Argentina
- Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Irene R Schloss
- Centro Austral de Investigaciones Científicas (CADIC)- CONICET, Ushuaia, Tierra del Fuego, Argentina
- Instituto Antártico Argentino, San Martín, Buenos Aires, Argentina
- Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
4
|
DNA barcoding reveals hidden nemertean diversity from the marine protected area Namuncurá–Burdwood Bank, Southwestern Atlantic. Polar Biol 2023. [DOI: 10.1007/s00300-023-03117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Ramírez FJ, Guinder VA, Ferronato C, Krock B. Increase in records of toxic phytoplankton and associated toxins in water samples in the Patagonian Shelf (Argentina) over 40 years of field surveys. HARMFUL ALGAE 2022; 118:102317. [PMID: 36195419 DOI: 10.1016/j.hal.2022.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Historical records (1980-2018) of potentially toxic phytoplankton and phycotoxins on the Argentine Continental Shelf (35°S-56.5°S) and adjacent ocean waters were systematically reviewed from scientific literature to assess their abundance and diversity over spatial and temporal scales. Records increased from 124 in the period 1980-1992 to 638 in 2006-2018, and the scanned area expanded from coastal to offshore waters including the shelf-break front. Alexandrium was the most reported genus (54%) during 1980-1992 and Pseudo-nitzschia (52%) during 1993-2005. By 2006-2018, a higher diversity was documented: Alexandrium (20%), Dinophysis (32%), Pseudo-nitzschia (31%), and the most recently described potentially toxic dinoflagellates of the family Amphidomataceae (8%). Likewise, a wider spectrum of phycotoxins was documented in the last decade, with lipophilic (LSTs) and paralytic shellfish toxins (PSTs) as the most recorded. Increased records are related to intensified monitoring, more detailed taxonomic analyses and more sensitive chemical techniques for marine biotoxin detection. This quantitative assessment brings light to the widespread occurrence of HABs along contrasting areas of the Patagonian Shelf and sets the basis for ecosystem risk evaluation. Moreover, comparison of toxic phytoplankton reported in the SW Atlantic with those in similar temperate seas in the North Atlantic and the Pacific Ocean, disclose ocean basin differences in strain toxicity of A. ostenfeldii, D. tripos and Azadinium species.
Collapse
Affiliation(s)
- Fernando J Ramírez
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS), B8000FWB Bahía Blanca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Valeria A Guinder
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS), B8000FWB Bahía Blanca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Carola Ferronato
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS), B8000FWB Bahía Blanca. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Bernd Krock
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
6
|
DNA metabarcoding data reveals harmful algal-bloom species undescribed previously at the northern Antarctic Peninsula region. Polar Biol 2022. [DOI: 10.1007/s00300-022-03084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Di Mauro R, Castillo S, Pérez A, Iachetti CM, Silva L, Tomba JP, Chiesa IL. Anthropogenic microfibers are highly abundant at the Burdwood Bank seamount, a protected sub-Antarctic environment in the Southwestern Atlantic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119364. [PMID: 35489539 DOI: 10.1016/j.envpol.2022.119364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Microplastics debris in the marine environment have been widely studied across the globe. Within these particles, the most abundant and prevalent type in the oceans are anthropogenic microfibers (MFs), although they have been historically overlooked mostly due to methodological constraints. MFs are currently considered omnipresent in natural environments, however, contrary to the Northern Hemisphere, data on their abundance and distribution in Southern Oceans ecosystems are still scarce, in particular for sub-Antarctic regions. Using Niskin bottles we've explored microfibers abundance and distribution in the water column (3-2450 m depth) at the Burdwood Bank (BB), a seamount located at the southern extreme of the Patagonian shelf, in the Southwestern Atlantic Ocean. The MFs detected from filtered water samples were photographed and measured using ImageJ software, to estimate length, width, and the projected surface area of each particle. Our results indicate that small pieces of fibers are widespread in the water column at the BB (mean of 17.4 ± 12.6 MFs.L-1), from which, 10.6 ± 5.3 MFs.L-1 were at the surface (3-10 m depth), 20 ± 9 MFs.L-1 in intermediate waters (41-97 m), 24.6 ± 17.3 MFs.L-1 in deeper waters (102-164 m), and 9.2 ± 5.3 MFs.L-1 within the slope break of the seamount. Approximately 76.1% of the MFs were composed of Polyethylene terephthalate, and the abundance was dominated by the size fraction from 0.1 to 0.3 mm of length. Given the high relative abundance of small and aged MFs, and the oceanographic complexity of the study area, we postulate that MFs are most likely transported to the BB via the Antarctic Circumpolar Current. Our findings imply that this sub-Antarctic protected ecosystem is highly exposed to microplastic pollution, and this threat could be spreading towards the highly productive waters, north of the study area.
Collapse
Affiliation(s)
- Rosana Di Mauro
- Gabinete de Zooplancton, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Castillo
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Ecología Marina, Córdoba, Argentina; Instituto Multidisciplinario de Biología Vegetal (CONICET - Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Analía Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Invertebrados Marinos, CCNA, Universidad Maimónides-CONICET, CABA, Argentina
| | - Clara M Iachetti
- Universidad Nacional de Tierra del Fuego (UNTdF), Ushuaia, Argentina
| | - Leonel Silva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Mar del Plata, Argentina
| | - Juan P Tomba
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA-CONICET), Mar del Plata, Argentina
| | - Ignacio L Chiesa
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Crustáceos y Ecosistemas Costeros (CADIC-CONICET), Ushuaia, Argentina. Bernardo Houssay 200, Ushuaia, V9410CAB, Argentina.
| |
Collapse
|
8
|
Mohanty TR, Tiwari NK, Kumari S, Ray A, Manna RK, Bayen S, Roy S, Das Gupta S, Ramteke MH, Swain HS, Bhor M, Das BK. Variation of Aulacoseira granulata as an eco-pollution indicator in subtropical large river Ganga in India: a multivariate analytical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37498-37512. [PMID: 35066840 DOI: 10.1007/s11356-021-18096-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Aulacoseira granulata (Ehrenberg) Simonsen 1979 are considered as the eco-variable species which varies in density and diversity along with their morphological traits with the interference of environmental changes, so it is considered as one of the major ecological indicators of the water quality of lotic as well as lentic aquatic ecosystems. To assess major environmental factors which contribute to A. granulata bloom in the riverine system, a study was carried out from 2018 to 2019 comprising four different seasons at 11 sampling sites of river Ganga in the middle and lower stretch of river Ganga comprising freshwater and estuarine zones. For the analysis, different univariate, as well as multivariate, analytical tools such as principal component analysis (PCA) and water pollution index (WPI) were used. In the finding, it was observed that the average abundance of A. granulata was found maximum during the winter season. Among all the studied sites, the maximum average abundance was at Balagarh (71,576 cell l-1) and minimum at Diamond Harbour (68 cell l-1). The environmental factors such as dissolved oxygen, depth, and altitude showed a significant influence on the growth of A. granulata, while the water temperature negatively influenced the growth rate of A. granulata. The WPI showed a significantly negative correlation with cell length. Finally, the study concludes that the blooming of A. granulata is highly influenced by varied environmental conditions along the river Ganga, suggesting possible eutrophication. Therefore, a certain minimum flow and depth especially during the lean season have to be maintained for the sustenance of planktonic biota in the river Ganga.
Collapse
Affiliation(s)
- Trupti Rani Mohanty
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Nitish Kumar Tiwari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Suman Kumari
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Archisman Ray
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Ranjan Kumar Manna
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Supriti Bayen
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Shreya Roy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | | | - Himanshu Sekhar Swain
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Manisha Bhor
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India.
| |
Collapse
|
9
|
Fioramonti NE, Ribeiro Guevara S, Becker YA, Riccialdelli L. Mercury transfer in coastal and oceanic food webs from the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 175:113365. [PMID: 35114547 DOI: 10.1016/j.marpolbul.2022.113365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of contaminants, such as mercury (Hg), in marine trophic webs is a critical topic in the scientific community due to the high concentrations encountered in organisms. In this study we attempted to provide information on total Hg accumulation patterns and possible pathways of trophic transfers assessed in combination with δ13C and δ15N to understand how this contaminant permeates three sub-Antarctic food webs: the Beagle Channel (BC), the Atlantic coast of Tierra del Fuego (AC-TDF) and Burdwood Bank (BB). We found a site-specific pattern of Hg transfer and biomagnification processes, while the oceanic BB showed major Hg transfer through the pelagic domain, coastal sectors (BC and AC-TDF) indicate a general biodilution process but with Hg concentrations incrementing with the benthivory grade. This represents a dissimilar Hg bioavailability for marine consumers that rely on different diet and forage in different habitats, and may become an issue of important conservation concern for these southern areas.
Collapse
Affiliation(s)
- N E Fioramonti
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina.
| | - S Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av E. Bustillo Km 9.500, Bariloche, Argentina
| | - Y A Becker
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
10
|
Laura S, Mariano A. Benthic communities at the marine protected area Namuncurá/Burdwood bank, SW Atlantic Ocean: detection of vulnerable marine ecosystems and contributions to the assessment of the rezoning process. Polar Biol 2021. [DOI: 10.1007/s00300-021-02936-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|