1
|
Soares MAKM, Franco LVR, Chagas JAC, Gomes F, Barros MH. Saccharomyces cerevisiae Dmo2p is required for the stability and maturation of newly translated Cox2p. FEBS J 2025; 292:2410-2428. [PMID: 39932033 DOI: 10.1111/febs.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 01/29/2025] [Indexed: 05/11/2025]
Abstract
Based on available platforms detailing the Saccharomyces cerevisiae mitochondrial proteome and other high-throughput studies, we identified the yeast gene DMO2 as having a profile of genetic and physical interactions that indicate a putative role in mitochondrial respiration. Dmo2p is a homologue to human distal membrane-arm assembly complex protein 1 (DMAC1); both proteins have two conserved cysteines in a Cx2C motif. Here, we localised Dmo2p in the mitochondrial inner membrane with the conserved cysteines facing the intermembrane space. The respiratory deficiency of dmo2 mutants at 37°C led to a reduction in cytochrome c oxidase (COX) activity (COX) and in the formation of cytochrome bc1 complex-COX supercomplexes; dmo2 also has a rapid turnover of Cox2p, the second subunit of the COX complex that harbours the binuclear CuA centre. Moreover, Dmo2p co-immunoprecipitates with Cox2p and components required for maturation of the CuA centre, such as Sco1p and Sco2p. Finally, DMO2 overexpression can suppress cox23 respiratory deficiency, a mutant that has impaired mitochondrial copper homeostasis. Mass spectrometry data unveiled the interaction of Dmo2p with different large molecular complexes, including bc1-COX supercomplexes, the TIM23 machinery and the ADP/ATP nucleotide translocator. Overall, our data suggest that Dmo2p is required for Cox2p maturation, potentially by aiding proteins involved in copper transport and incorporation into Cox2p.
Collapse
Affiliation(s)
| | | | | | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Brazil
| | - Mário H Barros
- Departamento Microbiologia, Instituto Ciências Biomédicas, Universidade de São Paulo, Brazil
| |
Collapse
|
2
|
Moretti-Horten DN, Peselj C, Taskin AA, Myketin L, Schulte U, Einsle O, Drepper F, Luzarowski M, Vögtle FN. Synchronized assembly of the oxidative phosphorylation system controls mitochondrial respiration in yeast. Dev Cell 2024; 59:1043-1057.e8. [PMID: 38508182 DOI: 10.1016/j.devcel.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Control of protein stoichiometry is essential for cell function. Mitochondrial oxidative phosphorylation (OXPHOS) presents a complex stoichiometric challenge as the ratio of the electron transport chain (ETC) and ATP synthase must be tightly controlled, and assembly requires coordinated integration of proteins encoded in the nuclear and mitochondrial genome. How correct OXPHOS stoichiometry is achieved is unknown. We identify the Mitochondrial Regulatory hub for respiratory Assembly (MiRA) platform, which synchronizes ETC and ATP synthase biogenesis in yeast. Molecularly, this is achieved by a stop-and-go mechanism: the uncharacterized protein Mra1 stalls complex IV assembly. Two "Go" signals are required for assembly progression: binding of the complex IV assembly factor Rcf2 and Mra1 interaction with an Atp9-translating mitoribosome induce Mra1 degradation, allowing synchronized maturation of complex IV and the ATP synthase. Failure of the stop-and-go mechanism results in cell death. MiRA controls OXPHOS assembly, ensuring correct stoichiometry of protein machineries encoded by two different genomes.
Collapse
Affiliation(s)
- Daiana N Moretti-Horten
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Carlotta Peselj
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Asli Aras Taskin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lisa Myketin
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Biochemistry & Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Network Aging Research, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Veloso Ribeiro Franco L, Barros MH. Biolistic transformation of the yeast Saccharomyces cerevisiae mitochondrial DNA. IUBMB Life 2023; 75:972-982. [PMID: 37470229 DOI: 10.1002/iub.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/21/2023]
Abstract
The insertion of genes into mitochondria by biolistic transformation is currently only possible in the yeast Saccharomyces cerevisiae and the algae Chlamydomonas reinhardtii. The fact that S. cerevisiae mitochondria can exist with partial (ρ- mutants) or complete deletions (ρ0 mutants) of mitochondrial DNA (mtDNA), without requiring a specific origin of replication, enables the propagation of exogenous sequences. Additionally, mtDNA in this organism undergoes efficient homologous recombination, making it well-suited for genetic manipulation. In this review, we present a summarized historical overview of the development of biolistic transformation and discuss iconic applications of the technique. We also provide a detailed example on how to obtain transformants with recombined foreign DNA in their mitochondrial genome.
Collapse
Affiliation(s)
| | - Mario H Barros
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Franco LVR, Su CH, Simas Teixeira L, Almeida Clarck Chagas J, Barros MH, Tzagoloff A. Allotopic expression of COX6 elucidates Atco-driven co-assembly of cytochrome oxidase and ATP synthase. Life Sci Alliance 2023; 6:e202301965. [PMID: 37604582 PMCID: PMC10442929 DOI: 10.26508/lsa.202301965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023] Open
Abstract
The Cox6 subunit of Saccharomyces cerevisiae cytochrome oxidase (COX) and the Atp9 subunit of the ATP synthase are encoded in nuclear and mitochondrial DNA, respectively. The two proteins interact to form Atco complexes that serve as the source of Atp9 for ATP synthase assembly. To determine if Atco is also a precursor of COX, we pulse-labeled Cox6 in isolated mitochondria of a cox6 nuclear mutant with COX6 in mitochondrial DNA. Only a small fraction of the newly translated Cox6 was found to be present in Atco, which can explain the low concentration of COX and poor complementation of the cox6 mutation by the allotopic gene. This and other pieces of evidence presented in this study indicate that Atco is an obligatory source of Cox6 for COX biogenesis. Together with our finding that atp9 mutants fail to assemble COX, we propose a regulatory model in which Atco unidirectionally couples the biogenesis of COX to that of the ATP synthase to maintain a proper ratio of these two complexes of oxidative phosphorylation.
Collapse
Affiliation(s)
- Leticia Veloso R Franco
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brasil
| | - Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
5
|
Overexpression of MRX9 impairs processing of RNAs encoding mitochondrial oxidative phosphorylation factors COB and COX1 in yeast. J Biol Chem 2022; 298:102214. [PMID: 35779633 PMCID: PMC9307953 DOI: 10.1016/j.jbc.2022.102214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial translation is a highly regulated process, and newly synthesized mitochondrial products must first associate with several nuclear-encoded auxiliary factors to form oxidative phosphorylation complexes. The output of mitochondrial products should therefore be in stoichiometric equilibrium with the nuclear-encoded products to prevent unnecessary energy expense or the accumulation of pro-oxidant assembly modules. In the mitochondrial DNA of Saccharomyces cerevisiae, COX1 encodes subunit 1 of the cytochrome c oxidase and COB the central core of the cytochrome bc1 electron transfer complex; however, factors regulating the expression of these mitochondrial products are not completely described. Here, we identified Mrx9p as a new factor that controls COX1 and COB expression. We isolated MRX9 in a screen for mitochondrial factors that cause poor accumulation of newly synthesized Cox1p and compromised transition to the respiratory metabolism. Northern analyses indicated lower levels of COX1 and COB mature mRNAs accompanied by an accumulation of unprocessed transcripts in the presence of excess Mrx9p. In a strain devoid of mitochondrial introns, MRX9 overexpression did not affect COX1 and COB translation or respiratory adaptation, implying Mrx9p regulates processing of COX1 and COB RNAs. In addition, we found Mrx9p was localized in the mitochondrial inner membrane, facing the matrix, as a portion of it cosedimented with mitoribosome subunits and its removal or overexpression altered Mss51p sedimentation. Finally, we showed accumulation of newly synthesized Cox1p in the absence of Mrx9p was diminished in cox14 null mutants. Taken together, these data indicate a regulatory role of Mrx9p in COX1 RNA processing.
Collapse
|
6
|
Yang G, Zhao T, Lu S, Weng J, Zeng X. T1121G Point Mutation in the Mitochondrial Gene COX1 Suppresses a Null Mutation in ATP23 Required for the Assembly of Yeast Mitochondrial ATP Synthase. Int J Mol Sci 2022; 23:ijms23042327. [PMID: 35216443 PMCID: PMC8877559 DOI: 10.3390/ijms23042327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear-encoded Atp23 was previously shown to have dual functions, including processing the yeast Atp6 precursor and assisting the assembly of yeast mitochondrial ATP synthase. However, it remains unknown whether there are genes functionally complementary to ATP23 to rescue atp23 null mutant. In the present paper, we screen and characterize three revertants of atp23 null mutant and reveal a T1121G point mutation in the mitochondrial gene COX1 coding sequence, which leads to Val374Gly mutation in Cox1, the suppressor in the revertants. This was verified further by the partial restoration of mitochondrial ATP synthase assembly in atp23 null mutant transformed with exogenous hybrid COX1 T1121G mutant plasmid. The predicted tertiary structure of the Cox1 p.Val374Gly mutation showed no obvious difference from wild-type Cox1. By further chase labeling with isotope [35S]-methionine, we found that the stability of Atp6 of ATP synthase increased in the revertants compared with the atp23 null mutant. Taking all the data together, we revealed that the T1121G point mutation of mitochondrial gene COX1 could partially restore the unassembly of mitochondrial ATP synthase in atp23 null mutant by increasing the stability of Atp6. Therefore, this study uncovers a gene that is partially functionally complementary to ATP23 to rescue ATP23 deficiency, broadening our understanding of the relationship between yeast the cytochrome c oxidase complex and mitochondrial ATP synthase complex.
Collapse
|
7
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|