1
|
Kashyap PL, Kumar S, Khanna A, Jasrotia P, Singh G. Sustainable microbial solutions for managing fungal threats in wheat: progress and future directions. World J Microbiol Biotechnol 2025; 41:79. [PMID: 40011267 DOI: 10.1007/s11274-025-04286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Biotrophic and necrotrophic fungi are responsible for causing a range of diseases in wheat, resulting in significant economic losses and a decline in quality. Effective management of these diseases generally involves a combination of resistance breeding, chemical treatments, and cultural practices. However, traditional breeding methods have made limited progress due to the slow pace of genetic improvements, the complexity of the wheat genome, and the quantitative nature of disease resistance traits, along with the constantly evolving virulence of pathogens. This situation has prompted research into more effective and eco-friendly alternatives, such as biological control. Recent studies have concentrated on using antagonistic microbes to decrease the reliance on chemical pesticides while enhancing wheat health and productivity. A comprehensive overview of current knowledge on wheat disease outbreaks is being developed, with a focus on advancements in biological control strategies. The review will first discuss the key fungal pathogens and their associated diseases, followed by a summary of biological control methods, particularly emphasizing potential microbial antagonists. Additionally, it will explore strategies to improve the efficacy of biocontrol agents, which are crucial for a holistic and sustainable approach to wheat disease management. Ultimately, the article will highlight the role of biological control in promoting more sustainable agricultural practices, particularly concerning wheat diseases, in alignment with the UN sustainable development goals.
Collapse
Affiliation(s)
- Prem Lal Kashyap
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India.
| | - Sudheer Kumar
- Regional Center, ICAR-Indian Institute of Pulses Research, Bikaner, Rajasthan, 334001, India
| | - Annie Khanna
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India.
| | - Poonam Jasrotia
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Njoroge HW, Hu J, Yu Y, Yuan Z, Lin Y, Han X, Liu Z, Muia AW, Liu H. A rice rhizosphere plant growth-promoting Streptomyces corchorusii isolate antagonizes Magnaporthe oryzae and elicits defense responses in rice. J Appl Microbiol 2024; 135:lxae266. [PMID: 39674266 DOI: 10.1093/jambio/lxae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 12/16/2024]
Abstract
AIMS Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice (Oryza sativa L.). The aim of this study was to investigate the biocontrol potential of rice rhizosphere actinomycetes against M. oryzae Guy 11, and elucidate the antagonistic mechanisms. METHODS AND RESULTS An isolate characterized as a Streptomyces corchorusii strain (Sc75) using the 16S rRNA gene exhibited superior antifungal activity. Sc75 had an inhibitory effect of 69.25% ± 0.15% against M. oryzae and broad antifungal activity on other fungal plant pathogens in the dual culture assay. Its cell-free culture filtrate inhibited fungal growth and reduced mycelial mass. Also, the ethyl acetate crude extract completely inhibited conidia germination and appressoria formation on the hydrophobic coverslips and detached leaf at a concentration of 20 mg/ml. Its volatile organic compounds (VOCs) suppressed fungal growth by 98.42%. GC-MS analysis of the VOCs identified butanoic acid, 2-methyl-, methyl ester; di-tert-butyl peroxide; furan, 2-pentyl-; and undecanoic acid, 10-methyl-, methyl ester as the main components. In the greenhouse experiment, the disease severity was reduced and growth promotion was evident. Molecular investigation revealed that Sc75 upregulated defense-related genes involved in the synthesis of jasmonic acid, salicylic acid signaling pathway, and led to callose deposition and ROS production in the leaves. Finally, Sc75 produced hydrolytic enzymes, siderophore, indole acetic acid, gibberellic acid, phosphate solubilization, and 1-aminocyclopropane-1-carboxylate deaminase. CONCLUSIONS The rice rhizosphere soil harbors actinomycetes that can be explored as biocontrol agents against fungal pathogens such as M. oryzae. The isolate Sc75 had superior antifungal activity against M. oryzae and other selected plant pathogenic fungi. It showed remarkable antagonistic activity through direct antibiosis, production of VOCs, antifungal metabolites in the culture filtrates and crude extracts, and produced enzymes. In addition, the isolate promoted plant growth, reduced rice blast disease index in the greenhouse experiment, and elicited defense-related responses. Sc75 is a promising candidate for future exploration as a biofungicide and a biofertilizer.
Collapse
Affiliation(s)
- Hellen Wambui Njoroge
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Jiangfei Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Yijie Yu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Yuqing Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Xixi Han
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Zhuang Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | | | - Hongxia Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
3
|
Rabby SMF, Chakraborty M, Gupta DR, Rahman M, Paul SK, Mahmud NU, Rahat AAM, Jankuloski L, Islam T. Bonactin and Feigrisolide C Inhibit Magnaporthe oryzae Triticum Fungus and Control Wheat Blast Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:2108. [PMID: 36015411 PMCID: PMC9414722 DOI: 10.3390/plants11162108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Wheat blast caused by the Magnaporthe oryzaeTriticum (MoT) pathotype is one of the most damaging fungal diseases of wheat. During the screening of novel bioactive secondary metabolites, we observed two marine secondary metabolites, bonactin and feigrisolide C, extracted from the marine bacteria Streptomyces spp. (Act 8970 and ACT 7619), remarkably inhibited the hyphal growth of an MoT isolate BTJP 4 (5) in vitro. In a further study, we found that bonactin and feigrisolide C reduced the mycelial growth of this highly pathogenic isolate in a dose-dependent manner. Bonactin inhibited the mycelial development of BTJP 4 (5) more effectively than feigrisolide C, with minimal concentrations for inhibition being 0.005 and 0.025 µg/disk, respectively. In a potato dextrose agar (PDA) medium, these marine natural products greatly reduced conidia production in the mycelia. Further bioassays demonstrated that these secondary metabolites could inhibit the MoT conidia germination, triggered lysis, or conidia germinated with abnormally long branched germ tubes that formed atypical appressoria (low melanization) of BTJP 4 (5). Application of these natural products in a field experiment significantly protected wheat from blast disease and increased grain yield compared to the untreated control. As far as we are aware, this is the first report of bonactin and feigrisolide C that inhibited mycelial development, conidia production, conidial germination, and morphological modifications in the germinated conidia of an MoT isolate and suppressed wheat blast disease in vivo. To recommend these compounds as lead compounds or biopesticides for managing wheat blast, more research is needed with additional MoT isolates to identify their exact mode of action and efficacy of disease control in diverse field conditions.
Collapse
Affiliation(s)
- S. M. Fajle Rabby
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Moutoshi Chakraborty
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Mahfuzur Rahman
- Extension Service, Davis College of Agriculture, West Virginia University, Morgantown, WV 26506, USA
| | - Sanjoy Kumar Paul
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Abdullah Al Mahbub Rahat
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
| | - Tofazzal Islam
- Institute of Biotechnology & Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|
4
|
Alam MS, Maina AW, Feng Y, Wu LB, Frei M. Interactive effects of tropospheric ozone and blast disease (Magnaporthe oryzae) on different rice genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48893-48907. [PMID: 35201578 PMCID: PMC9252976 DOI: 10.1007/s11356-022-19282-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
Rising tropospheric ozone concentrations can cause rice yield losses and necessitate the breeding of ozone-tolerant rice varieties. However, ozone tolerance should not compromise the resistance to important biotic stresses such as the rice blast disease. Therefore, we investigated the interactive effects of ozone and rice blast disease on nine different rice varieties in an experiment testing an ozone treatment, blast inoculation, and their interaction. Plants were exposed to an ozone concentration of 100 ppb for 7 h per day or ambient air throughout the growth period. Half of the plants were simultaneously infected with rice blast inoculum. Grain yield was significantly reduced in the blast treatment (17%) and ozone treatment (37%), while the combination of both stresses did not further decrease grain yields compared to ozone alone. Similar trends occurred for physiological traits such as vegetation indices, normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), Lichtenthaler index 2 (Lic2), and anthocyanin reflectance index 1 (ARI1), as well as stomatal conductance and lipid peroxidation. Ozone exposure mitigated the formation of visible blast symptoms, while blast inoculation did not significantly affect visible ozone symptoms. Although different genotypes showed contrasting responses to the two types of stresses, no systematic pattern was observed regarding synergies or trade-offs under the two types of stresses. Therefore, we conclude that despite the similarities in physiological stress responses to ozone and blast, the tolerance to these stresses does not appear to be genetically linked in rice.
Collapse
Affiliation(s)
- Muhammad Shahedul Alam
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
| | | | - Yanru Feng
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
- Institute for Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
| | - Lin-Bo Wu
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany
| | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus-Liebig University Giessen, 35390, Giessen, Germany.
| |
Collapse
|
5
|
Paul SK, Chakraborty M, Rahman M, Gupta DR, Mahmud NU, Rahat AAM, Sarker A, Hannan MA, Rahman MM, Akanda AM, Ahmed JU, Islam T. Marine Natural Product Antimycin A Suppresses Wheat Blast Disease Caused by Magnaporthe oryzae Triticum. J Fungi (Basel) 2022; 8:jof8060618. [PMID: 35736101 PMCID: PMC9225063 DOI: 10.3390/jof8060618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
The application of chemical pesticides to protect agricultural crops from pests and diseases is discouraged due to their harmful effects on humans and the environment. Therefore, alternative approaches for crop protection through microbial or microbe-originated pesticides have been gaining momentum. Wheat blast is a destructive fungal disease caused by the Magnaporthe oryzae Triticum (MoT) pathotype, which poses a serious threat to global food security. Screening of secondary metabolites against MoT revealed that antimycin A isolated from a marine Streptomyces sp. had a significant inhibitory effect on mycelial growth in vitro. This study aimed to investigate the inhibitory effects of antimycin A on some critical life stages of MoT and evaluate the efficacy of wheat blast disease control using this natural product. A bioassay indicated that antimycin A suppressed mycelial growth (62.90%), conidiogenesis (100%), germination of conidia (42%), and the formation of appressoria in the germinated conidia (100%) of MoT at a 10 µg/mL concentration. Antimycin A suppressed MoT in a dose-dependent manner with a minimum inhibitory concentration of 0.005 μg/disk. If germinated, antimycin A induced abnormal germ tubes (4.8%) and suppressed the formation of appressoria. Interestingly, the application of antimycin A significantly suppressed wheat blast disease in both the seedling (100%) and heading stages (76.33%) of wheat at a 10 µg/mL concentration, supporting the results from in vitro study. This is the first report on the inhibition of mycelial growth, conidiogenesis, conidia germination, and detrimental morphological alterations in germinated conidia, and the suppression of wheat blast disease caused by a Triticum pathotype of M. Oryzae by antimycin A. Further study is required to unravel the precise mode of action of this promising natural compound for considering it as a biopesticide to combat wheat blast.
Collapse
Affiliation(s)
- Sanjoy Kumar Paul
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Mahfuzur Rahman
- Extension Service, Davis College of Agriculture, West Virginia University, Morgantown, WV 26506, USA;
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Abdullah Al Mahbub Rahat
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Aniruddha Sarker
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
| | - Abdul Mannan Akanda
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Jalal Uddin Ahmed
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (S.K.P.); (M.C.); (D.R.G.); (N.U.M.); (A.A.M.R.); (M.M.R.)
- Correspondence:
| |
Collapse
|
6
|
Natural Protein Kinase Inhibitors, Staurosporine, and Chelerythrine Suppress Wheat Blast Disease Caused by Magnaporthe oryzae Triticum. Microorganisms 2022; 10:microorganisms10061186. [PMID: 35744705 PMCID: PMC9230996 DOI: 10.3390/microorganisms10061186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/01/2023] Open
Abstract
Protein kinases (PKs), being key regulatory enzymes of a wide range of signaling pathways, are potential targets for antifungal agents. Wheat blast disease, caused by Magnaporthe oryzae Triticum (MoT), is an existential threat to world food security. During the screening process of natural metabolites against MoT fungus, we find that two protein kinase inhibitors, staurosporine and chelerythrine chloride, remarkably inhibit MoT hyphal growth. This study further investigates the effects of staurosporine and chelerythrine chloride on MoT hyphal growth, conidia production, and development as well as wheat blast inhibition in comparison to a commercial fungicide, Nativo®75WG. The growth of MoT mycelia is significantly inhibited by these compounds in a dose-dependent manner. These natural compounds greatly reduce conidia production in MoT mycelia along with suppression of conidial germination and triggered lysis, resulting in deformed germ tubes and appressoria. These metabolites greatly suppress blast development in artificially inoculated wheat plants in the field. This is the first report of the antagonistic effect of these two natural PKC inhibitory alkaloids on MoT fungal developmental processes in vitro and suppression of wheat blast disease on both leaves and spikes in vivo. Further research is needed to identify their precise mechanism of action to consider them as biopesticides or lead compounds for controlling wheat blast.
Collapse
|
7
|
Mahmud NU, Gupta DR, Paul SK, Chakraborty M, Mehebub MS, Surovy MZ, Rabby SF, Rahat AAM, Roy PC, Sohrawardy H, Amin MA, Masud MK, Ide Y, Yamauchi Y, Hossain MS, Islam T. Daylight-Driven Rechargeable TiO 2 Nanocatalysts Suppress Wheat Blast Caused by Magnaporthe oryzae Triticum. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Sanjoy Kumar Paul
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Md Shabab Mehebub
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Musrat Zahan Surovy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - S.M. Fajle Rabby
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Abdullah Al Mahbub Rahat
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Paritosh Chandra Roy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Hossain Sohrawardy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072 Australia
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072 Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Md. Shahriar Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, QLD 4072 Australia
- School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| |
Collapse
|
8
|
Khan H, Wani SH, Bhardwaj SC, Rani K, Bishnoi SK, Singh GP. Wheat spike blast: genetic interventions for effective management. Mol Biol Rep 2022; 49:5483-5494. [PMID: 35478296 DOI: 10.1007/s11033-022-07356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/05/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The fundamental concepts of the genetics, race classification and epidemiology of the Wheat spike blast causing fungus Magnaporthe oryzae pathotype Triticum (MoT) are still evolving despite of its discovery in 1985 in Brazil for the first time. The fungus seems to defy the research progress that is being made globally by continuously evolving into pathotypes which have already overcome the much celebrated 2NS resistance in wheat lines as well as few of the initially effective fungicides. The compartmentalized i.e. two speed genome of the MoT, conferring the fungus an evolutionary advantage, has emerged as a challenge for the wheat spike blast researchers complicating its already difficult management. The airborne fungus with a range of alternative hosts is finding new geographical niches situated on different continents and is a matter of great apprehension among the nations whose food security is primarily dependent on wheat. The wheat blast outbreak in Bangladesh during 2016 was attributed to an isolate from Latin America escaping through a seed import consignment while the latest Zambian outbreak is still to be studied in detail regarding its origin and entry. The challenges in dealing wheat spike blast are not only on the level of genetics and epidemiology alone but also on the levels of policy making regarding international seed movement and research collaborations. The present review deals with these issues mainly concerning the effective management and controlling the international spread of this deadly disease of wheat, with a particular reference to India. We describe the origin, taxonomy, epidemiology and symptomology of MoT and briefly highlight its impact and management practices from different countries. We also discuss the advances in genomics and genome editing technologies that can be used to develop elite wheat genotypes resistant against different stains of wheat spike blast.
Collapse
Affiliation(s)
- Hanif Khan
- ICAR-Indian Institute of Wheat and Barley Research, 132001, Karnal, Haryana, India.
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 192101, Khudwani, J & K, India
| | - Subhash Chander Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, 171 002, Shimla, Himachal Pradesh, India
| | - Kirti Rani
- ICAR-Directorate of Groundnut Research (DGR), 362001, Junagadh, Gujarat, India
| | - Santosh Kumar Bishnoi
- ICAR- Indian Institute of Wheat and Barley Research, Seed & Research Farm, 125001, Hisar, Haryana, India
| | | |
Collapse
|
9
|
Antifungal Secondary Metabolites Against Blast Fungus Magnaporthe oryzae. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Ascari JP, Barro JP, Santana FM, Padua JMV, Maciel JLN, Lau D, Torres GAM, Sbalcheiro CC, Seixas CDS, Goulart ACP, Sussel AAB, Schipanski CA, Chagas DF, Coelho MAO, Montecelli TDN, Amaral DR, Custódio AAP, Moreira LSO, Utiamada CM, Venâncio WS, Goussain RCS, Alves KS, Del Ponte EM. Sequential Post-Heading Applications for Controlling Wheat Blast: A 9-Year Summary of Fungicide Performance in Brazil. PLANT DISEASE 2021; 105:4051-4059. [PMID: 34270912 DOI: 10.1094/pdis-06-21-1183-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wheat blast, caused by Pyricularia oryzae Triticum lineage, is a major constraint to wheat production, mainly in the tropics of Brazil, where severe epidemics have been more frequent. We analyzed disease and wheat yield data from 42 uniform field trials conducted over 9 years (2012 to 2020) to assess whether the percent control and yield response were influenced by fungicide type, region (tropical or subtropical), and year. Six treatments were selected, all evaluated in at least 19 trials. Two fungicides were applied as solo active ingredients (MANCozeb, and TEBUconazole), and four were premixes (AZOXystrobin plus TEBU, TriFLoXystrobin plus PROThioconazole, TFLX plus TEBU, and PYRAclostrobin plus EPOXiconazole). Percent control, calculated from back-transforming estimates by a meta-analysis network model fitted to the log of the means, ranged from 43 to 58%, with all but PYRA plus EPOX showing efficacy >52% on average, not differing among them. The variation in both efficacy and yield response was explained by region, and all but TEBU performed better in the subtropics than in the tropics. Yield response from using three sequential sprays was approximately two times greater in the subtropics (319 to 532 kg/ha) than in the tropics (149 to 241.3 kg/ha). No significant decline in fungicide efficacy or yield response was observed in 9 years of study for any of the fungicides. These results reinforce the need to improve control by adopting an integrated management approach in the tropics given poorer performance and lower profitability, especially for the premixes, than in the subtropics.
Collapse
Affiliation(s)
- João P Ascari
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Jhonatan P Barro
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Flávio M Santana
- Embrapa Trigo, Passo Fundo, 99050-970, Rio Grande do Sul, Brazil
| | - José M V Padua
- Departamento de Agricultura, Universidade Federal de Lavras, Lavras, 37200-900, Minas Gerais, Brazil
| | - João L N Maciel
- Embrapa Trigo, Passo Fundo, 99050-970, Rio Grande do Sul, Brazil
| | - Douglas Lau
- Embrapa Trigo, Passo Fundo, 99050-970, Rio Grande do Sul, Brazil
| | | | | | | | | | | | - Carlos A Schipanski
- G12 Agro Pesquisa e Consultoria Agronômica, Guarapuava, 85015-344, Paraná, Brazil
| | - Débora F Chagas
- G12 Agro Pesquisa e Consultoria Agronômica, Guarapuava, 85015-344, Paraná, Brazil
| | - Maurício A O Coelho
- Empresa de Pesquisa Agropecuária de Minas Gerais, Patos de Minas, 38700-970, Minas Gerais, Brazil
| | | | - Daniel R Amaral
- Instituto Federal do Triângulo Mineiro Uberaba, 38064-790, Minas Gerais, Brazil
| | - Adriano A P Custódio
- Área de Proteção de Plantas, Instituto Agronômico do Paraná, Londrina, 86047-902, Paraná, Brazil
| | - Lucas S O Moreira
- Área de Proteção de Plantas, Instituto Agronômico do Paraná, Londrina, 86047-902, Paraná, Brazil
| | | | - Wilson S Venâncio
- Estação Experimental Agrícola Campos Gerais, Palmeira, 84130-000, Paraná, Brazil
| | - Rita C S Goussain
- Instituto Federal do Mato Grosso, Campo Verde, 78840-000, Mato Grosso, Brazil
| | - Kaique S Alves
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
11
|
Prospect and Challenges for Sustainable Management of Climate Change-Associated Stresses to Soil and Plant Health by Beneficial Rhizobacteria. STRESSES 2021. [DOI: 10.3390/stresses1040015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change imposes biotic and abiotic stresses on soil and plant health all across the planet. Beneficial rhizobacterial genera, such as Bacillus, Pseudomonas, Paraburkholderia, Rhizobium, Serratia, and others, are gaining popularity due to their ability to provide simultaneous nutrition and protection of plants in adverse climatic conditions. Plant growth-promoting rhizobacteria are known to boost soil and plant health through a variety of direct and indirect mechanisms. However, various issues limit the wider commercialization of bacterial biostimulants, such as variable performance in different environmental conditions, poor shelf-life, application challenges, and our poor understanding on complex mechanisms of their interactions with plants and environment. This study focused on detecting the most recent findings on the improvement of plant and soil health under a stressful environment by the application of beneficial rhizobacteria. For a critical and systematic review story, we conducted a non-exhaustive but rigorous literature survey to assemble the most relevant literature (sorting of a total of 236 out of 300 articles produced from the search). In addition, a critical discussion deciphering the major challenges for the commercialization of these bioagents as biofertilizer, biostimulants, and biopesticides was undertaken to unlock the prospective research avenues and wider application of these natural resources. The advancement of biotechnological tools may help to enhance the sustainable use of bacterial biostimulants in agriculture. The perspective of biostimulants is also systematically evaluated for a better understanding of the molecular crosstalk between plants and beneficial bacteria in the changing climate towards sustainable soil and plant health.
Collapse
|
12
|
Chakraborty M, Mahmud NU, Ullah C, Rahman M, Islam T. Biological and biorational management of blast diseases in cereals caused by Magnaporthe oryzae. Crit Rev Biotechnol 2021; 41:994-1022. [PMID: 34006149 DOI: 10.1080/07388551.2021.1898325] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Blast diseases, caused by the fungal pathogen Magnaporthe oryzae, are among the most destructive diseases that occur on at least 50 species of grasses, including cultivated cereals wheat, and rice. Although fungicidal control of blast diseases has widely been researched, development of resistance of the pathogen against commercially available products makes this approach unreliable. Novel approaches such as the application of biopesticides against the blast fungus are needed for sustainable management of this economically important disease. Antagonistic microorganisms, such as fungi and probiotic bacteria from diverse taxonomic genera were found to suppress blast fungi both in vitro and in vivo. Various classes of secondary metabolites, such as alkaloids, phenolics, and terpenoids of plant and microbial origin significantly inhibit fungal growth and may also be effective in managing blast diseases. Common modes of action of microbial biocontrol agents include: antibiosis, production of lytic enzymes, induction of systemic resistance in host plant, and competition for nutrients or space. However, the precise mechanism of biocontrol of the blast fungus by antagonistic microorganisms and/or their bioactive secondary metabolites is not well understood. Commercial formulations of biocontrol agents and bioactive natural products could be cost-effective and sustainable but their availability at this time is extremely limited. This review updates our knowledge on the infection pathway of the wheat blast fungus, catalogs naturally occurring biocontrol agents that may be effective against blast diseases, and discusses their role in sustainable management of the disease.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Mahfuzur Rahman
- WVU Extension Service, West Virginia University, Morgantown, WV, USA
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| |
Collapse
|