1
|
Stratigi A, Soler-García M, Krout M, Shukla S, De Bono M, Richmond JE, Laurent P. Neuroendocrine Control of Synaptic Transmission by PHAC-1 in C. elegans. J Neurosci 2025; 45:e1767232024. [PMID: 39919830 PMCID: PMC11949478 DOI: 10.1523/jneurosci.1767-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
A dynamic interplay between fast synaptic signals and slower neuromodulatory signals controls the excitatory/inhibitory (E/I) balance within neuronal circuits. The mechanisms by which neuropeptide signaling is regulated to maintain E/I balance remain uncertain. We designed a genetic screen to isolate genes involved in the peptidergic maintenance of the E/I balance in the C. elegans motor circuit. This screen identified the C. elegans orthologs of the presynaptic phosphoprotein synapsin (snn-1) and the protein phosphatase 1 (PP1) regulatory subunit PHACTR1 (phac-1). We demonstrate that both phac-1 and snn-1 alter the motor behavior of C. elegans, and genetic interactions suggest that SNN-1 contributes to PP1-PHAC-1 holoenzyme signaling. De novo variants of human PHACTR1, associated with early-onset epilepsies [developmental and epileptic encephalopathy 70 (DEE70)], when expressed in C. elegans resulted in constitutive PP1-PHAC-1 holoenzyme activity. Unregulated PP1-PHAC-1 signaling alters the synapsin and actin cytoskeleton and increases neuropeptide release by cholinergic motor neurons, which secondarily affects the presynaptic vesicle cycle. Together, these results clarify the dominant mechanisms of action of the DEE70 alleles and suggest that altered neuropeptide release may alter E/I balance in DEE70.
Collapse
Affiliation(s)
- Aikaterini Stratigi
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Miguel Soler-García
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mia Krout
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Shikha Shukla
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Mario De Bono
- Institute of Science and Technology, Klosterneuburg 3400, Austria
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Brussels 1070, Belgium
| |
Collapse
|
2
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
3
|
Shahi N, Thapliyal S, Babu K. Sensory modulation of neuropeptide signaling by CASY-1 gates cholinergic transmission at Caenorhabditis elegans neuromuscular junction. J Biosci 2025; 50:4. [PMID: 39912398 PMCID: PMC7617471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The neuromuscular junction (NMJ) is crucial for understanding the fundamentals of synaptic transmission and activity. Various modulators operate within neuronal circuits, from sensory to motor neurons, to influence synaptic transmission at the NMJ. This study sheds light on the regulation of sensory-evoked cholinergic neurotransmission at motor neurons orchestrated by CASY-1, the mammalian calsyntenin orthologue. We report that the increased excitation-inhibition (E-I) ratio at the NMJ in casy-1 mutants is likely due to its interactions with neuromodulators in sensory neurons. We explored the intricate genetic interactions of CASY- 1 with the neuropeptide FLP-21 and its receptor, NPR-1, both of which display simultaneous alterations in cholinergic signaling at the NMJ. Through genetic, pharmacological, and bioimaging-based experiments, we proposed a mechanism by which CASY-1 potentially interacts with the neuropeptide-carrying vesicles to regulate synaptic transmission. The nematode Caenorhabditis elegans serves as an ideal model system for this study, enabling detailed insights into neuromodulatory mechanisms in the neuronal circuit.
Collapse
Affiliation(s)
- Navneet Shahi
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, Karnataka, India
| | - Shruti Thapliyal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science (IISc), Bangalore, Karnataka, India
| |
Collapse
|
4
|
Asim M, Qianqian G, Waris A, Wang H, Lai Y, Chen X. Unraveling the role of cholecystokinin in epilepsy: Mechanistic insight into neuroplasticity. Neurochem Int 2024; 180:105870. [PMID: 39343303 DOI: 10.1016/j.neuint.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Epilepsy is a disorder characterized by an imbalance between excitability and inhibition, leading to uncontrolled hyperexcitability of neurons in the central nervous system. Despite the prevalence of epileptic seizures, the underlying mechanisms driving this hyperexcitability remain poorly understood. This review article aims to enhance our understanding of the mechanisms of epilepsy, with a specific focus on the role of cholecystokinin (CCK) in this debilitating disease. We will begin with an introduction to the topic, followed by an examination of the role of GABAergic neurons and the synaptic plasticity mechanisms associated with seizures. As we delve deeper, we will elucidate how CCK and its receptors contribute to seizure behavior. Finally, we will discuss the CCK-dependent synaptic plasticity mechanisms and highlight their potential implications in seizure activity. Through a comprehensive examination of these aspects, this review provides valuable insights into the involvement of CCK and its receptors in epilepsy. By improving our understanding of the mechanisms underlying this condition, particularly the role of CCK, we aim to contribute to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Gao Qianqian
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Abdul Waris
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Yuanying Lai
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
5
|
Mountoufaris G, Nair A, Yang B, Kim DW, Vinograd A, Kim S, Linderman SW, Anderson DJ. A line attractor encoding a persistent internal state requires neuropeptide signaling. Cell 2024; 187:5998-6015.e18. [PMID: 39191257 PMCID: PMC11490375 DOI: 10.1016/j.cell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
Affiliation(s)
- George Mountoufaris
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Wook Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Amit Vinograd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute, Pasadena, CA 91001, USA.
| |
Collapse
|
6
|
Kamaraju D, Chatterjee M, Papolu PK, Shivakumara TN, Sreevathsa R, Hada A, Rao U. Host-induced RNA interference targeting the neuromotor gene FMRFamide-like peptide-14 (Mi-flp14) perturbs Meloidogyne incognita parasitic success in eggplant. PLANT CELL REPORTS 2024; 43:178. [PMID: 38907748 DOI: 10.1007/s00299-024-03259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T1- to T4-generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.
Collapse
Affiliation(s)
- Divya Kamaraju
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India
| | - Madhurima Chatterjee
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 7505101, Bet Dagan, Israel.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Engrave Biolabs Pvt Ltd. , Shanthipuram, Kukatpally, Hyderabad, 500072, India.
| |
Collapse
|
7
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
8
|
Blazie SM, Jin Y. Executing cell-specific cross-linking immunoprecipitation and sequencing (seCLIP) in C. elegans. STAR Protoc 2023; 4:101959. [PMID: 36566382 PMCID: PMC9803825 DOI: 10.1016/j.xpro.2022.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022] Open
Abstract
The single-end enhanced cross-linking immunoprecipitation (seCLIP) method is well suited for efficient and unbiased transcriptome-wide interrogation of RNA-binding protein (RBP) interaction sites. Here, we provide a protocol for executing cell-specific seCLIP for any desired RBP in Caenorhabditis elegans. We begin with steps and recommendations for transgene construction and Cas9-mediated chromosomal integration. We provide detailed procedures for isolation of RBP-associated RNA fragments, subsequent library preparation, and sequencing. We further discuss best practices for data analysis, interpretation of results, and troubleshooting. For complete details on the use and execution of this protocol, please refer to Blazie et al. (2021).1.
Collapse
Affiliation(s)
- Stephen M Blazie
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Insulin-like growth factor I mitigates post-traumatic stress by inhibiting AMP-kinase in orexin neurons. Mol Psychiatry 2022; 27:2182-2196. [PMID: 35115701 PMCID: PMC9126821 DOI: 10.1038/s41380-022-01442-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
Abstract
Maladaptive coping behaviors are probably involved in post-traumatic stress disorders (PTSD), but underlying mechanisms are incompletely understood. We now report that mice lacking functional insulin-like growth factor I (IGF-I) receptors in orexin neurons of the lateral hypothalamus (Firoc mice) are unresponsive to the anxiolytic actions of IGF-I and develop PTSD-like behavior that is ameliorated by inhibition of orexin neurons. Conversely, systemic IGF-I treatment ameliorated PTSD-like behavior in a wild-type mouse model of PTSD (PTSD mice). Further, systemic IGF-I modified the GABA/Glutamate synaptic structure in orexin neurons of naïve wild-type mice by increasing the dephosphorylation of GABA(B) receptor subunit through inhibition of AMP-kinase (AMPK). Significantly, pharmacological inhibition of AMPK mimicked IGF-I, normalizing fear behavior in PTSD mice. Thus, we suggest that IGF-I enables coping behaviors by balancing E/I input onto orexin neurons in a context-dependent manner. These observations provide a novel therapeutic approach to PTSD through modulation of AMPK.
Collapse
|
10
|
Oliver D, Ramachandran S, Philbrook A, Lambert CM, Nguyen KCQ, Hall DH, Francis MM. Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genet 2022; 18:e1010016. [PMID: 35089924 PMCID: PMC8827443 DOI: 10.1371/journal.pgen.1010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
The functional properties of neural circuits are defined by the patterns of synaptic connections between their partnering neurons, but the mechanisms that stabilize circuit connectivity are poorly understood. We systemically examined this question at synapses onto newly characterized dendritic spines of C. elegans GABAergic motor neurons. We show that the presynaptic adhesion protein neurexin/NRX-1 is required for stabilization of postsynaptic structure. We find that early postsynaptic developmental events proceed without a strict requirement for synaptic activity and are not disrupted by deletion of neurexin/nrx-1. However, in the absence of presynaptic NRX-1, dendritic spines and receptor clusters become destabilized and collapse prior to adulthood. We demonstrate that NRX-1 delivery to presynaptic terminals is dependent on kinesin-3/UNC-104 and show that ongoing UNC-104 function is required for postsynaptic maintenance in mature animals. By defining the dynamics and temporal order of synapse formation and maintenance events in vivo, we describe a mechanism for stabilizing mature circuit connectivity through neurexin-based adhesion.
Collapse
Affiliation(s)
- Devyn Oliver
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shankar Ramachandran
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Alison Philbrook
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Christopher M. Lambert
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ken C. Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Michael M. Francis
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
11
|
Hada A, Singh D, Papolu PK, Banakar P, Raj A, Rao U. Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. PLANT CELL REPORTS 2021; 40:2287-2302. [PMID: 34387737 DOI: 10.1007/s00299-021-02767-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE This study establishes possibility of combinatorial silencing of more than one functional gene for their efficacy against root-knot nematode, M. incognita. Root-knot nematodes (RKN) of the genus Meloidogyne are the key important plant parasitic nematodes (PPNs) in agricultural and horticultural crops worldwide. Among RKNs, M. incognita is the most notorious that demand exploration of novel strategies for their management. Due to its sustainable and target-specific nature, RNA interference (RNAi) has gained unprecedented importance to combat RKNs. However, based on the available genomic information and interaction studies, it can be presumed that RKNs are dynamic and not dependent on single genes for accomplishing a particular function. Therefore, it becomes extremely important to consider silencing of more than one gene to establish any synergistic or additive effect on nematode parasitism. In this direction, we have combined three effectors specific to subventral gland cells of M. incognita, Mi-msp1, Mi-msp16, Mi-msp20 as fusion cassettes-1 and two FMRFamide-like peptides, Mi-flp14, Mi-flp18, and Mi-msp20 as fusion cassettes-2 to establish their possible utility for M. incognita management. In vitro RNAi assay in tomato and adzuki bean using these two fusion gene negatively altered nematode behavior in terms of reduced attraction, invasion, development, and reproduction. Subsequently, Nicotiana tabacum plants were transformed with these two fusion gene hairpin RNA-expressing vectors (hpRNA), and characterized via PCR, qRT-PCR, and Southern blot hybridization. Production of siRNAs specific to Mi-flp18 and Mi-msp1 was also confirmed by Northern hybridization. Further, transgenic events expressing single copy insertions of hpRNA constructs of fusion 1 and fusion-2 conferred up to 85% reduction in M. incognita multiplication. Besides, expression quantification revealed a significant reduction in mRNA abundance of target genes (up to 1.8-fold) in M. incognita females extracted from transgenic plants, and provided additional evidence for successful gene silencing.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Banakar
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ankita Raj
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
12
|
Blazie SM, Takayanagi-Kiya S, McCulloch KA, Jin Y. Eukaryotic initiation factor EIF-3.G augments mRNA translation efficiency to regulate neuronal activity. eLife 2021; 10:68336. [PMID: 34323215 PMCID: PMC8354637 DOI: 10.7554/elife.68336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron-type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR-dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neurological disorders.
Collapse
Affiliation(s)
- Stephen M Blazie
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Seika Takayanagi-Kiya
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Katherine A McCulloch
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| |
Collapse
|