1
|
Beyer L, Miura T, Fraiola K, Spalding HL, Williams TM, Martinez J, Kosaki RK, Lopes KH. Assessment of the spatial distribution of Chondria tumulosa, a nuisance macroalga at Manawai in Papahānaumokuākea Marine National Monument using high-resolution satellite imagery. JOURNAL OF PHYCOLOGY 2025. [PMID: 40353826 DOI: 10.1111/jpy.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
In 2019, a red macroalgal species, Chondria tumulosa, was discovered overgrowing native coral and algal species and changing the benthic communities of Manawai (Pearl and Hermes Atoll) in Papahānaumokuākea Marine National Monument (PMNM). The main objective of this study was to assess the spatial distribution of C. tumulosa across the forereef and backreef of Manawai using satellite remote sensing. WorldView-2 and -3 commercial high-resolution satellite images were obtained for a 12-year period from 2010 to 2021, from which, time-series animations were created. Previous studies reported that C. tumulosa appeared as distinctively dark features in satellite imagery with the first evidence of C. tumulosa in 2015. Thus, the animations were visually inspected to identify dark patches that became visible around the time of discovery and persisted in subsequent years. Field survey data of C. tumulosa cover collected in 2019-2021 were used to gain confidence in the identification of dark patches. Using those dark features as a reference and a support vector machine, the latest high-resolution satellite images from the 12-year period were classified into a map of distinctive dark patches suspected to be C. tumulosa with an average overall accuracy of 78%. Accuracy assessments of the classification results of C. tumulosa based on field survey data collected in 2019-2021 resulted in an overall accuracy of 79%. This study leverages the use of remote sensing to map a newly discovered alga in a remote area in the hopes of providing managers with a methodology to further monitor the species for long-term management.
Collapse
Affiliation(s)
- Leiana Beyer
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
- United States Fish and Wildlife Service, Honolulu, Hawaii, USA
- United States Fish and Wildlife Service, Atlanta, Georgia, USA
| | - Tomoaki Miura
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | | | - Heather L Spalding
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - Taylor M Williams
- Department of Biology, College of Charleston, Charleston, South Carolina, USA
| | - Jonathan Martinez
- United States Fish and Wildlife Service, Albuquerque, New Mexico, USA
| | - Randall K Kosaki
- National Oceanic and Atmospheric Administration, Honolulu, Hawaii, USA
| | - Keolohilani H Lopes
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
2
|
Nichols PK, Fraiola KMS, Sherwood AR, Hauk BB, Lopes KH, Davis CA, Fumo JT, Counsell CWW, Williams TM, Spalding HL, Marko PB. Navigating uncertainty in environmental DNA detection of a nuisance marine macroalga. PLoS One 2025; 20:e0318414. [PMID: 39903716 PMCID: PMC11793909 DOI: 10.1371/journal.pone.0318414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Early detection of nuisance species is crucial for managing threatened ecosystems and preventing widespread establishment. Environmental DNA (eDNA) data can increase the sensitivity of biomonitoring programs, often at minimal cost and effort. However, eDNA analyses are prone to errors that can complicate their use in management frameworks. To address this, eDNA studies must consider imperfect detections and estimate error rates. Detecting nuisance species at low abundances with minimal uncertainty is vital for successful containment and eradication. We developed a novel eDNA assay to detect a nuisance marine macroalga across its colonization front using surface seawater samples from Papahānaumokuākea Marine National Monument (PMNM), one of the world's largest marine reserves. Chondria tumulosa is a cryptogenic red alga with invasive traits, forming dense mats that overgrow coral reefs and smother native flora and fauna in PMNM. We verified the eDNA assay using site-occupancy detection modeling from quantitative polymerase chain reaction (qPCR) data, calibrated with visual estimates of benthic cover of C. tumulosa that ranged from < 1% to 95%. Results were subsequently validated with high-throughput sequencing of amplified eDNA and negative control samples. Overall, the probability of detecting C. tumulosa at occupied sites was at least 92% when multiple qPCR replicates were positive. False-positive rates were 3% or less and false-negative errors were 11% or less. The assay proved effective for routine monitoring at shallow sites (less than 10 m), even when C. tumulosa abundance was below 1%. Successful implementation of eDNA tools in conservation decision-making requires balancing uncertainties in both visual and molecular detection methods. Our results and modeling demonstrated the assay's high sensitivity to C. tumulosa, and we outline steps to infer ecological presence-absence from molecular data. This reliable, cost-effective tool enhances the detection of low-abundance species, and supports timely management interventions.
Collapse
Affiliation(s)
- Patrick K. Nichols
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | | | - Alison R. Sherwood
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Brian B. Hauk
- National Oceanic and Atmospheric Administration, Honolulu, HI, United States of America
| | - Keolohilani H. Lopes
- Natural Resources and Environmental Management, College of Tropical Agriculture and Human Resources, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Colt A. Davis
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - James T. Fumo
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Chelsie W. W. Counsell
- Cooperative Institute for Marine and Atmospheric Research, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| | - Taylor M. Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Heather L. Spalding
- Department of Biology, College of Charleston, Charleston, SC, United States of America
| | - Peter B. Marko
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
3
|
Fricke A, Bast F, Moreira-Saporiti A, Martins Bussanello G, Msuya FE, Teichberg M. Tropical bloom-forming mesoalgae Cladophoropsis sp. and Laurencia sp.-responses to ammonium enrichment and a simulated heatwave. JOURNAL OF PHYCOLOGY 2024; 60:554-573. [PMID: 38402562 DOI: 10.1111/jpy.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/26/2024]
Abstract
Algal blooms are increasing worldwide, driven by elevated nutrient inputs. However, it is still unknown how tropical benthic algae will respond to heatwaves, which are expected to be more frequent under global warming. In the present study, a multifactorial experiment was carried out to investigate the potential synergistic effects of increased ammonium inputs (25 μM, control at 2.5 μM) and a heatwave (31°C, control at 25°C) on the growth and physiology (e.g., ammonium uptake, nutrient assimilation, photosynthetic performance, and pigment concentrations) of two bloom-forming algal species, Cladophoropsis sp. and Laurencia sp. Both algae positively responded to elevated ammonium concentrations with higher growth and chlorophyll a and lutein concentrations. Increased temperature was generally a less important driver, interacting with elevated ammonium by decreasing the algaes' %N content and N:P ratios. Interestingly, this stress response was not captured by the photosynthetic yield (Fv/Fm) nor by the carbon assimilation (%C), which increased for both algae at higher temperatures. The negative effects of higher temperature were, however, buffered by nutrient inputs, showing an antagonistic response in the combined treatment for the concentration of VAZ (violaxanthin, antheraxanthin, zeaxanthin) and thalli growth. Ammonium uptake was initially higher for Cladophoropsis sp. and increased for Laurencia sp. over experimental time, showing an acclimation capacity even in a short time interval. This experiment shows that both algae benefited from increased ammonium pulses and were able to overcome the otherwise detrimental stress of increasingly emerging temperature anomalies, which provide them a strong competitive advantage and might support their further expansions in tropical marine systems.
Collapse
Affiliation(s)
- Anna Fricke
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Felix Bast
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Department of Botany, Central University of Punjab, Ghudda VPO, Punjab, India
| | - Agustín Moreira-Saporiti
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, Massachusetts, USA
| | - Giovanni Martins Bussanello
- Florianópolis (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Flower E Msuya
- Zanzibar Seaweed Cluster Initiative (ZaSCI), Zanzibar, Tanzania
| | - Mirta Teichberg
- WG Algae and Seagrass Ecology, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
- Marine Biological Laboratory, The Ecosystems Center, Woods Hole, Massachusetts, USA
| |
Collapse
|
4
|
Kuba GM, Spalding HL, Hill-Spanik KM, Williams TM, Paiano MO, Sherwood AR, Hauk BB, Kosaki RK, Fullerton H. Characterization of macroalgal-associated microbial communities from shallow to mesophotic depths at Manawai, Papahānaumokuākea Marine National Monument, Hawai'i. PeerJ 2023; 11:e16114. [PMID: 37842050 PMCID: PMC10569167 DOI: 10.7717/peerj.16114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
The Papahānaumokuākea Marine National Monument, Hawai'i, is one of the most isolated and protected archipelagos in the world, making it a natural laboratory to examine macroalgal-microbial diversity because of limited direct anthropogenic impacts. We collected the most abundant macroalgae from nine sites ranging from shallow subtidal (1.5 m) to mesophotic (75 m) depths around Manawai (Pearl and Hermes Atoll). We characterized the macroalgal bacterial communities via high-throughput amplicon sequencing and compared the influence of host phylum, species, site, and depth on these relationships at a single atoll. Ochrophyta species had the lowest bacterial diversity compared to Chlorophyta and Rhodophyta. Site and/or depth may influence the microbial community structure associated with Microdictyon setchellianum, indicating a possible disconnect of these microbial communities among habitats. Chondria tumulosa, a cryptogenic species with invasive traits, differed in associated microbiota compared to the native Laurencia galtsoffii, an alga from the same family collected at the same site and depth. While there was overlap of bacterial communities across sites for some algal species, the majority had minimal macroalgal-microbial community connectivity across Manawai. This mesophotic system, therefore, did not appear to be refugia for shallow water coral reefs at microscopic scales. Additional studies are required to identify other significant influences on microbial community variation.
Collapse
Affiliation(s)
- Gabrielle M. Kuba
- Department of Biology, College of Charleston, Charleston, SC, United States
| | | | - Kristina M. Hill-Spanik
- Department of Biology, Grice Marine Laboratory, College of Charleston, Charleston, SC, United States
| | - Taylor M. Williams
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Monica O. Paiano
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Alison R. Sherwood
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Brian B. Hauk
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, HI, United States
| | - Randall K. Kosaki
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, HI, United States
- Center for the Exploration of Coral Reef Ecosystems (XCoRE), Bishop Museum, Honolulu, HI, United States
| | - Heather Fullerton
- Department of Biology, College of Charleston, Charleston, SC, United States
| |
Collapse
|
5
|
Lopes KH, Miura T, Hauk B, Kosaki R, Leonard J, Hunter C. Rapid expansion of the invasive-like red macroalga, Chondria tumulosa (Rhodophyta), on the coral reefs of the Papahānaumokuākea Marine National Monument. JOURNAL OF PHYCOLOGY 2023; 59:1107-1111. [PMID: 37578989 DOI: 10.1111/jpy.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
A cryptogenic, invasive-like red macroalga, Chondria tumulosa, was first observed in 2016 forming thick mats on the forereef of Manawai Atoll within Papahānaumokuākea Marine National Monument. Subsequent expeditions revealed an increased abundance of this alga. In 2021, unattached C. tumulosa was observed forming a network of dark, meandering accumulations throughout the atoll's inner lagoon. High-resolution satellite imagery revealed that these accumulations became visible in 2015 (length: ~0.74 km; area: ~0.88 km2 ) and increased 56-fold in length and 115-fold in area by 2021 (length: 41.32 km; area: 101.34 km2 ). An exponential expansion rate of ~16.02 km · y-1 (length), ~44.75 km2 · y-1 (area). This study presents the comprehensive temporal and spatial expansion of C. tumulosa accumulations for Manawai Atoll since its discovery, providing ecologist and resource managers with a proxy to gauge the overall abundance trend of this invasive-like alga.
Collapse
Affiliation(s)
- Keolohilani H Lopes
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Tomoaki Miura
- Department of Natural Resources and Environmental Management, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Brian Hauk
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, Honolulu, Hawaii, USA
| | - Randall Kosaki
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, Honolulu, Hawaii, USA
| | - Jason Leonard
- Papahānaumokuākea Marine National Monument, National Oceanic and Atmospheric Administration, Honolulu, Honolulu, Hawaii, USA
| | - Cynthia Hunter
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
6
|
Richards Donà A, Smith CM, Bremer LL. Divergent responses of native and invasive macroalgae to submarine groundwater discharge. Sci Rep 2023; 13:13984. [PMID: 37633964 PMCID: PMC10460400 DOI: 10.1038/s41598-023-40854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Marine macroalgae are important indicators of healthy nearshore groundwater dependent ecosystems (GDEs), which are emergent global conservation priorities. Submarine groundwater discharge (SGD) supports abundant native algal communities in GDEs via elevated but naturally derived nutrients. GDEs are threatened by anthropogenic nutrient inputs that pollute SGD above ambient levels, favoring invasive algae. Accordingly, this case study draws on the GDE conditions of Kona, Hawai'i where we evaluated daily photosynthetic production and growth for two macroalgae; a culturally valued native (Ulva lactuca) and an invasive (Hypnea musciformis). Manipulative experiments-devised to address future land-use, climate change, and water-use scenarios for Kona-tested algal responses under a natural range of SGD nutrient and salinity levels. Our analyses demonstrate that photosynthesis and growth in U. lactuca are optimal in low-salinity, high-nutrient waters, whereas productivity for H. musciformis appears limited to higher salinities despite elevated nutrient subsidies. These findings suggest that reductions in SGD via climate change decreases in rainfall or increased water-use from the aquifer may relax physiological constraints on H. musciformis. Collectively, this study reveals divergent physiologies of a native and an invasive macroalga to SGD and highlights the importance of maintaining SGD quantity and quality to protect nearshore GDEs.
Collapse
Affiliation(s)
| | - Celia M Smith
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Leah L Bremer
- University of Hawai'i Economic Research Organization, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Water Resources Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
7
|
Díaz-Tapia P, Rodríguez-Buján I, Maggs CA, Verbruggen H. Phylogenomic analysis of pseudocryptic diversity reveals the new genus Deltalsia (Rhodomelaceae, Rhodophyta). JOURNAL OF PHYCOLOGY 2023; 59:264-276. [PMID: 36504198 DOI: 10.1111/jpy.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Molecular analyses, in combination with morphological studies, provide invaluable tools for delineating red algal taxa. However, molecular datasets are incomplete and taxonomic revisions are often required once additional species or populations are sequenced. The small red alga Conferva parasitica was described from the British Isles in 1762 and then reported from other parts of Europe. Conferva parasitica was traditionally included in the genus Pterosiphonia (type species P. cloiophylla in Schmitz and Falkenberg 1897), based on its morphological characters, and later transferred to Symphyocladia and finally to Symphyocladiella using molecular data from an Iberian specimen. However, although morphological differences have been observed between specimens of Symphyocladiella parasitica from northern and southern Europe they have yet to be investigated in a phylogenetic context. In this study, we collected specimens from both regions, studied their morphology and analyzed rbcL and cox1 DNA sequences. We determined the phylogenetic position of a British specimen using a phylogenomic approach based on mitochondrial and plastid genomes. Northern and southern European populations attributed to S. parasitica represent different species. Symphyocladiella arecina sp. nov. is proposed for specimens from southern Europe, but British specimens were resolved as a distant sister lineage to the morphologically distinctive Amplisiphonia, so we propose the new genus Deltalsia for this species. Our study highlights the relevance of using materials collected close to the type localities for taxonomic reassessments, and showcases the utility of genome-based phylogenies for resolving classification issues in the red algae.
Collapse
Affiliation(s)
- Pilar Díaz-Tapia
- Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, Paseo Marítimo Alcalde Francisco Vázquez, 10, 15001, A Coruña, Spain
| | - Iván Rodríguez-Buján
- Coastal Biology Research Group, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071, A Coruña, Spain
| | - Christine A Maggs
- Queen's University Marine Laboratory, Portaferry, Newtownards, BT22 1PF, UK
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
8
|
Inventory of the Seaweeds and Seagrasses of the Hawaiian Islands. BIOLOGY 2023; 12:biology12020215. [PMID: 36829491 PMCID: PMC9953416 DOI: 10.3390/biology12020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023]
Abstract
This updated list is composed of a total of 661 records, which includes 71 brown algae, 450 red algae, 137 green algae, and three seagrasses, with an overall rate of endemism of 13.2%. Almost half (46.7%) of the Hawaiian records presented here are represented by at least one DNA sequence, while 16.3% are confirmed through a DNA sequence match to a topotype, and 6.7% are confirmed through a DNA sequence match to a type specimen. The data are presented in the context of the natural history of the Hawaiian Islands, which is heavily influenced by the volcanic hotspot origin of the archipelago in the middle of the Pacific Ocean, as well as the important cultural role of seaweeds and other marine plants in Hawai'i, and the current threats to marine ecosystems, which include the introduction and proliferation of a number of invasive marine macroalgae.
Collapse
|
9
|
Paiano MO, Kosaki RK, Williams TM, Spalding HL, Sherwood AR. Complete chloroplast genome of Chondria tumulosa (Ceramiales, Rhodophyta), a recently described cryptogenic species with invasive traits from Papahānaumokuākea Marine National Monument, Hawai'i. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3119-3121. [PMID: 34651075 PMCID: PMC8510605 DOI: 10.1080/23802359.2021.1984327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The complete chloroplast genome of Chondria tumulosa, a red alga from Manawai (Pearl and Hermes Atoll), Hawai‘i, was determined and analyzed using next-generation sequencing and de novo assembly approaches. The chloroplast genome sequence of C. tumulosa was 172,617 bp and contained 231 genes, consisting of 197 protein-coding genes, 29 transfer RNA genes, three ribosomal RNA genes, one transfer-messenger RNA gene, one non-coding RNA gene, and one intron inserted into the trnM gene. The number of genes and genome structure was largely similar to other members of the family Rhodomelaceae. The phylogenomic analysis of 32 complete cpDNA from the red algal order Ceramiales showed that C. tumulosa is a distinct species within the Chondrieae tribe, and is a diverging early relative to the other three available Chondria chloroplast genomes.
Collapse
Affiliation(s)
- Monica O Paiano
- School of Life Sciences, University of Hawai'i, Honolulu, HI, USA
| | - Randall K Kosaki
- NOAA, Papahānaumokuākea Marine National Monument, Honolulu, HI, USA
| | | | - Heather L Spalding
- School of Life Sciences, University of Hawai'i, Honolulu, HI, USA.,Department of Biology, College of Charleston, Charleston, SC, USA
| | | |
Collapse
|