1
|
Sánchez Carretero L, Cardeñosa Pérez ÀC, Peces-Barba G, Pérez-Rial S. Differential lung gene expression identified Zscan2 and Bag6 as novel tissue repair players in an experimental COPD model. PLoS One 2024; 19:e0309166. [PMID: 39172905 PMCID: PMC11340952 DOI: 10.1371/journal.pone.0309166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Chronic obstructive pulmonary disease is a common chronic lung disease with an ever-increasing incidence. Despite years of drug research and approvals, we are still not able to halt progress or restore normal lung function. Our previous studies have demonstrated that liver growth factor-LGF has an effect on the repair of the affected tissue in a mouse model of cigarette smoke exposure, but by what pathways it achieves this is unknown. The present study aimed to identify differentially expressed genes between emphysematous mice treated with LGF to identify potential therapeutic targets for the treatment of pulmonary emphysema. The emphysema mouse model was induced by prolonged exposure to cigarette smoke. To determine the gene expression profile of the lung in smokers treated or not with LGF, lung messenger RNA gene expression was assessed with the Agilent Array platform. We carried out differentially expressed gene analysis, functional enrichment and validated in treated mouse lung samples. The treated group significantly improved lung function (~35%) and emphysema level (~20%), consistent with our previous published studies. Microarray analysis demonstrated 290 differentially expressed genes in total (2.0-fold over or lower expressed). Injury repair-associated genes and pathways were further enhanced in the lung of LGF treated mice. The expression trends of two genes (Zscan2 and Bag6) were different in emphysematous lungs treated with LGF compared to untreated lungs. Therefore, Zscan2 and Bag6 genes could play a role in regulating inflammation and the immune response in the lung that undergoes partial lung regeneration. However, further studies are necessary to demonstrate this causal relationship.
Collapse
Affiliation(s)
- Laura Sánchez Carretero
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Àdele Chole Cardeñosa Pérez
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Germán Peces-Barba
- Respiratory Research Unit, Health Research Institute–Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Sandra Pérez-Rial
- Molecular Genetics Department, Ramón y Cajal University Hospital–IRYCIS, Madrid, Spain
- Network Biomedical Research Center for Rare Diseases, Carlos III Health Institute (CIBERER, ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Fitzgerald LF, Lackey J, Moussa A, Shah SV, Castellanos AM, Khan S, Schonk M, Thome T, Salyers ZR, Jakkidi N, Kim K, Yang Q, Hepple RT, Ryan TE. Chronic aryl hydrocarbon receptor activity impairs muscle mitochondrial function with tobacco smoking. J Cachexia Sarcopenia Muscle 2024; 15:646-659. [PMID: 38333944 PMCID: PMC10995249 DOI: 10.1002/jcsm.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/21/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Accumulating evidence has demonstrated that chronic tobacco smoking directly contributes to skeletal muscle dysfunction independent of its pathological impact to the cardiorespiratory systems. The mechanisms underlying tobacco smoke toxicity in skeletal muscle are not fully resolved. In this study, the role of the aryl hydrocarbon receptor (AHR), a transcription factor known to be activated with tobacco smoke, was investigated. METHODS AHR related gene (mRNA) expression was quantified in skeletal muscle from adult controls and patients with chronic obstructive pulmonary disease (COPD), as well as mice with and without cigarette smoke exposure. Utilizing both skeletal muscle-specific AHR knockout mice exposed to chronic repeated (5 days per week for 16 weeks) cigarette smoke and skeletal muscle-specific expression of a constitutively active mutant AHR in healthy mice, a battery of assessments interrogating muscle size, contractile function, mitochondrial energetics, and RNA sequencing were employed. RESULTS Skeletal muscle from COPD patients (N = 79, age = 67.0 ± 8.4 years) had higher levels of AHR (P = 0.0451) and CYP1B1 (P < 0.0001) compared to healthy adult controls (N = 16, age = 66.5 ± 6.5 years). Mice exposed to cigarette smoke displayed higher expression of Ahr (P = 0.008), Cyp1b1 (P < 0.0001), and Cyp1a1 (P < 0.0001) in skeletal muscle compared to air controls. Cigarette smoke exposure was found to impair skeletal muscle mitochondrial oxidative phosphorylation by ~50% in littermate controls (Treatment effect, P < 0.001), which was attenuated by deletion of the AHR in muscle in male (P = 0.001), but not female, mice (P = 0.37), indicating there are sex-dependent pathological effects of smoking-induced AHR activation in skeletal muscle. Viral mediated expression of a constitutively active mutant AHR in the muscle of healthy mice recapitulated the effects of cigarette smoking by decreasing muscle mitochondrial oxidative phosphorylation by ~40% (P = 0.003). CONCLUSIONS These findings provide evidence linking chronic AHR activation secondary to cigarette smoke exposure to skeletal muscle bioenergetic deficits in male, but not female, mice. AHR activation is a likely contributor to the decline in muscle oxidative capacity observed in smokers and AHR antagonism may provide a therapeutic avenue aimed to improve muscle function in COPD.
Collapse
Affiliation(s)
| | - Jacob Lackey
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Ahmad Moussa
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Sohan V. Shah
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| | - Ana Maria Castellanos
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Shawn Khan
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Martin Schonk
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
| | - Trace Thome
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Zachary R. Salyers
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Nishka Jakkidi
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Kyoungrae Kim
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Qingping Yang
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
| | - Russell T. Hepple
- Department of Physical TherapyUniversity of FloridaGainesvilleFLUSA
- Myology InstituteUniversity of FloridaGainesvilleFLUSA
| | - Terence E. Ryan
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFLUSA
- Myology InstituteUniversity of FloridaGainesvilleFLUSA
- Center for Exercise Science, University of FloridaGainesvilleFLUSA
| |
Collapse
|
3
|
Decker ST, Alexandrou-Majaj N, Layec G. Effects of acute cigarette smoke concentrate exposure on mitochondrial energy transfer in fast- and slow-twitch skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148973. [PMID: 36972770 DOI: 10.1016/j.bbabio.2023.148973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The mechanisms underlying cigarette smoke-induced mitochondrial dysfunction in skeletal muscle are still poorly understood. Accordingly, this study aimed to examine the effects of cigarette smoke on mitochondrial energy transfer in permeabilized muscle fibers from skeletal muscles with differing metabolic characteristics. The electron transport chain (ETC) capacity, ADP transport, and respiratory control by ADP were assessed in fast- and slow-twitch muscle fibers from C57BL/6 mice (n = 11) acutely exposed to cigarette smoke concentrate (CSC) using high-resolution respirometry. CSC decreased complex I-driven respiration in the white gastrocnemius (CONTROL:45.4 ± 11.2 pmolO2.s-1.mg-1 and CSC:27.5 ± 12.0 pmolO2.s-1.mg-1; p = 0.01) and soleus (CONTROL:63.0 ± 23.8 pmolO2.s-1.mg-1 and CSC:44.6 ± 11.1 pmolO2.s-1.mg-1; p = 0.04). In contrast, the effect of CSC on Complex II-linked respiration increased its relative contribution to muscle respiratory capacity in the white gastrocnemius muscle. The maximal respiratory activity of the ETC was significantly inhibited by CSC in both muscles. Furthermore, the respiration rate dependent on the ADP/ATP transport across the mitochondrial membrane was significantly impaired by CSC in the white gastrocnemius (CONTROL:-70 ± 18 %; CSC:-28 ± 10 %; p < 0.001), but not the soleus (CONTROL:47 ± 16 %; CSC:31 ± 7 %; p = 0.08). CSC also significantly impaired mitochondrial thermodynamic coupling in both muscles. Our findings underscore that acute CSC exposure directly inhibits oxidative phosphorylation in permeabilized muscle fibers. This effect was mediated by significant perturbations of the electron transfer in the respiratory complexes, especially at complex I, in both fast and slow twitch muscles. In contrast, CSC-induced inhibition of the exchange of ADP/ATP across the mitochondrial membrane was fiber-type specific, with a large effect on fast-twitch muscles.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, USA
| | | | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, USA; Institute for Applied Life Science, University of Massachusetts Amherst, USA.
| |
Collapse
|
4
|
Guo M, McDermott MM, Dayanidhi S, Leeuwenburgh C, Wohlgemuth S, Ferrucci L, Peterson CA, Kosmac K, Tian L, Zhao L, Sufit R, Ho K, Criqui M, Xu S, Zhang D, Greenland P. Cigarette smoking and mitochondrial dysfunction in peripheral artery disease. Vasc Med 2023; 28:28-35. [PMID: 36567551 DOI: 10.1177/1358863x221143152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND This study evaluated the association of smoking with mitochondrial function in gastrocnemius muscle of people with peripheral artery disease (PAD). METHODS Participants were enrolled from Chicago, Illinois and consented to gastrocnemius biopsy. Mitochondrial oxidative capacity was measured in muscle with respirometry. Abundance of voltage-dependent anion channel (VDAC) (mitochondrial membrane abundance), peroxisome proliferator-activated receptor-γ coactivator (PGC-1α) (mitochondrial biogenesis), and electron transport chain complexes I-V were measured with Western blot. RESULTS Fourteen of 31 people with PAD (age 72.1 years, ABI 0.64) smoked cigarettes currently. Overall, there were no significant differences in mitochondrial oxidative capacity between PAD participants who currently smoked and those not currently smoking (complex I+II-mediated oxidative phosphorylation: 86.6 vs 78.3 pmolO2/s/mg, respectively [p = 0.39]). Among participants with PAD, those who currently smoked had a higher abundance of PGC-1α (p < 0.01), VDAC (p = 0.022), complex I (p = 0.021), and complex III (p = 0.021) proteins compared to those not currently smoking. People with PAD who currently smoked had lower oxidative capacity per VDAC unit (complex I+II-mediated oxidative phosphorylation [137.4 vs 231.8 arbitrary units, p = 0.030]) compared to people with PAD not currently smoking. Among people without PAD, there were no significant differences in any mitochondrial measures between currently smoking (n = 5) and those not currently smoking (n = 63). CONCLUSIONS Among people with PAD, cigarette smoking may stimulate mitochondrial biogenesis to compensate for reduced oxidative capacity per unit of mitochondrial membrane, resulting in no difference in overall mitochondrial oxidative capacity according to current smoking status among people with PAD. However, these results were cross-sectional and a longitudinal study is needed.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Mary M McDermott
- Department of Medicine, Northwestern University, Chicago, IL, USA.,Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Stephanie Wohlgemuth
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, USA
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA
| | | | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Lu Tian
- Department of Health Research and Policy, Stanford University, Stanford, CA, USA
| | - Lihui Zhao
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Sufit
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Karen Ho
- Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Michael Criqui
- Departments of Preventive Medicine, Family Medicine, and Public Health, University of California San Diego, San Diego, CA, USA
| | - Shujun Xu
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Dongxue Zhang
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Philip Greenland
- Department of Medicine, Northwestern University, Chicago, IL, USA.,Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
5
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Taivassalo T, Hepple RT. Integrating Mechanisms of Exacerbated Atrophy and Other Adverse Skeletal Muscle Impact in COPD. Front Physiol 2022; 13:861617. [PMID: 35721564 PMCID: PMC9203961 DOI: 10.3389/fphys.2022.861617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The normal decline in skeletal muscle mass that occurs with aging is exacerbated in patients with chronic obstructive pulmonary disease (COPD) and contributes to poor health outcomes, including a greater risk of death. There has been controversy about the causes of this exacerbated muscle atrophy, with considerable debate about the degree to which it reflects the very sedentary nature of COPD patients vs. being precipitated by various aspects of the COPD pathophysiology and its most frequent proximate cause, long-term smoking. Consistent with the latter view, recent evidence suggests that exacerbated aging muscle loss with COPD is likely initiated by decades of smoking-induced stress on the neuromuscular junction that predisposes patients to premature failure of muscle reinnervation capacity, accompanied by various alterations in mitochondrial function. Superimposed upon this are various aspects of COPD pathophysiology, such as hypercapnia, hypoxia, and inflammation, that can also contribute to muscle atrophy. This review will summarize the available knowledge concerning the mechanisms contributing to exacerbated aging muscle affect in COPD, consider the potential role of comorbidities using the specific example of chronic kidney disease, and identify emerging molecular mechanisms of muscle impairment, including mitochondrial permeability transition as a mechanism of muscle atrophy, and chronic activation of the aryl hydrocarbon receptor in driving COPD muscle pathophysiology.
Collapse
Affiliation(s)
- Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Russell T. Hepple
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- *Correspondence: Russell T. Hepple,
| |
Collapse
|
7
|
NMR Spectroscopy Identifies Chemicals in Cigarette Smoke Condensate That Impair Skeletal Muscle Mitochondrial Function. TOXICS 2022; 10:toxics10030140. [PMID: 35324765 PMCID: PMC8955362 DOI: 10.3390/toxics10030140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 01/16/2023]
Abstract
Tobacco smoke-related diseases such as chronic obstructive pulmonary disease (COPD) are associated with high healthcare burden and mortality rates. Many COPD patients were reported to have muscle atrophy and weakness, with several studies suggesting intrinsic muscle mitochondrial impairment as a possible driver of this phenotype. Whereas much information has been learned about muscle pathology once a patient has COPD, little is known about how active tobacco smoking might impact skeletal muscle physiology or mitochondrial health. In this study, we examined the acute effects of cigarette smoke condensate (CSC) on muscle mitochondrial function and hypothesized that toxic chemicals present in CSC would impair mitochondrial respiratory function. Consistent with this hypothesis, we found that acute exposure of muscle mitochondria to CSC caused a dose-dependent decrease in skeletal muscle mitochondrial respiratory capacity. Next, we applied an analytical nuclear magnetic resonance (NMR)-based approach to identify 49 water-soluble and 12 lipid-soluble chemicals with high abundance in CSC. By using a chemical screening approach in the Seahorse XF96 analyzer, several CSC-chemicals, including nicotine, o-Cresol, phenylacetate, and decanoic acid, were found to impair ADP-stimulated respiration in murine muscle mitochondrial isolates significantly. Further to this, several chemicals, including nicotine, o-Cresol, quinoline, propylene glycol, myo-inositol, nitrosodimethylamine, niacinamide, decanoic acid, acrylonitrile, 2-naphthylamine, and arsenic acid, were found to significantly decrease the acceptor control ratio, an index of mitochondrial coupling efficiency.
Collapse
|
8
|
Decker ST, Kwon OS, Zhao J, Hoidal JR, Heuckstadt T, Richardson RS, Sanders KA, Layec G. Skeletal muscle mitochondrial adaptations induced by long-term cigarette smoke exposure. Am J Physiol Endocrinol Metab 2021; 321:E80-E89. [PMID: 34121449 PMCID: PMC8321829 DOI: 10.1152/ajpendo.00544.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Because patients with chronic obstructive pulmonary disease (COPD) are often physically inactive, it is still unclear whether the lower respiratory capacity in the locomotor muscles of these patients is due to cigarette smoking per se or is secondary to physical deconditioning. Accordingly, the purpose of this study was to examine mitochondrial alterations in the quadriceps muscle of 10 mice exposed to 8 mo of cigarette smoke, a sedentary mouse model of emphysema, and 9 control mice, using immunoblotting, spectrophotometry, and high-resolution respirometry in permeabilized muscle fibers. Mice exposed to smoke displayed a twofold increase in the oxidative stress marker, 4-HNE, (P < 0.05) compared with control mice. This was accompanied by significant decrease in protein expression of UCP3 (65%), ANT (58%), and mitochondrial complexes II-V (∼60%-75%). In contrast, maximal ADP-stimulated respiration with complex I and II substrates (CON: 23.6 ± 6.6 and SMO: 19.2 ± 8.2 ρM·mg-1·s-1) or octanoylcarnitine (CON: 21.8 ± 9.0 and SMO: 16.5 ± 6.6 ρM·mg-1·s-1) measured in permeabilized muscle fibers, as well as citrate synthase activity, were not significantly different between groups. Collectively, our findings revealed that sedentary mice exposed to cigarette smoke for 8 mo, which is typically associated with pulmonary inflammation and emphysema, exhibited a preserved mitochondrial respiratory capacity for various substrates, including fatty acid, in the skeletal muscle. However, the mitochondrial adaptations induced by cigarette smoke favored the development of chronic oxidative stress, which can indirectly contribute to augment the susceptibility to muscle fatigue and exercise intolerance.NEW & NOTEWORTHY It is unclear whether the exercise intolerance and skeletal muscle mitochondrial dysfunction observed in patients with COPD is due to cigarette smoke exposure, per se, or if they are secondary consequences to inactivity. Herein, while long-term exposure to cigarette smoke induces oxidative stress and an altered skeletal muscle phenotype, cigarette smoke does not directly contribute to mitochondrial dysfunction. With this evidence, we demonstrate the critical role of physical inactivity in cigarette smoke-related skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Stephen T Decker
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Oh-Sung Kwon
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut
- UConn Center on Aging and Department of Orthopaedic Surgery, University of Connecticut, School of Medicine, Farmington, Connecticut
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - John R Hoidal
- Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Thomas Heuckstadt
- Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Karl A Sanders
- Department of Internal Medicine, Pulmonary Division, University of Utah, Salt Lake City, Utah
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts
- Institute of Applied Life Science, University of Massachusetts Amherst, Amherst, Massachusetts
- Geriatric Research, Education, and Clinical Center, George E. Wahlen VA Medical Center, Salt Lake City, Utah
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
9
|
Li N, Bai RF, Li C, Dang LH, Du QX, Jin QQ, Cao J, Wang YY, Sun JH. Insight into molecular profile changes after skeletal muscle contusion using microarray and bioinformatics analyses. Biosci Rep 2021; 41:BSR20203699. [PMID: 33398324 PMCID: PMC7816072 DOI: 10.1042/bsr20203699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Muscle trauma frequently occurs in daily life. However, the molecular mechanisms of muscle healing, which partly depend on the extent of the damage, are not well understood. The present study aimed to investigate gene expression profiles following mild and severe muscle contusion, and to provide more information about the molecular mechanisms underlying the repair process. A total of 33 rats were divided randomly into control (n=3), mild contusion (n=15), and severe contusion (n=15) groups; the contusion groups were further divided into five subgroups (1, 3, 24, 48, and 168 h post-injury; n=3 per subgroup). A total of 2844 and 2298 differentially expressed genes (DEGs) were identified using microarray analyses in the mild and severe contusions, respectively. From the analysis of the 1620 coexpressed genes in mildly and severely contused muscle, we discovered that the gene profiles in functional modules and temporal clusters were similar between the mild and severe contusion groups; moreover, the genes showed time-dependent patterns of expression, which allowed us to identify useful markers of wound age. The functional analyses of genes in the functional modules and temporal clusters were performed, and the hub genes in each module-cluster pair were identified. Interestingly, we found that genes down-regulated at 24-48 h were largely associated with metabolic processes, especially of the oxidative phosphorylation (OXPHOS), which has been rarely reported. These results improve our understanding of the molecular mechanisms underlying muscle repair, and provide a basis for further studies of wound age estimation.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Ru-feng Bai
- Key Laboratory of Evidence Science, China University of Political Science and law, Beijing, China
- Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Chun Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Li-hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Qiu-xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Qian-qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Ying-yuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Jun-hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| |
Collapse
|
10
|
Cigarette Smoke Extract Activates Hypoxia-Inducible Factors in a Reactive Oxygen Species-Dependent Manner in Stroma Cells from Human Endometrium. Antioxidants (Basel) 2021; 10:antiox10010048. [PMID: 33401600 PMCID: PMC7823731 DOI: 10.3390/antiox10010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cigarette smoking (CS) is a major contributing factor in the development of a large number of fatal and debilitating disorders, including degenerative diseases and cancers. Smoking and passive smoking also affect the establishment and maintenance of pregnancy. However, to the best of our knowledge, the effects of smoking on the human endometrium remain poorly understood. In this study, we investigated the regulatory mechanism underlying CS-induced hypoxia-inducible factor (HIF)-1α activation using primary human endometrial stromal cells and an immortalized cell line (KC02-44D). We found that the CS extract (CSE) increased reactive oxygen species levels and stimulated HIF-1α protein stabilization in endometrial stromal cells, and that CS-induced HIF-1α-dependent gene expression under non-hypoxic conditions in a concentration- and time-dependent manner. Additionally, we revealed the upregulated expression of a hypoxia-induced gene set following the CSE treatment, even under normoxic conditions. These results indicated that HIF-1α might play an important role in CS-exposure-induced cellular stress, inflammation, and endometrial remodeling.
Collapse
|