1
|
Ji J, Gong C, Lu G, Zhang J, Liu B, Liu X, Lin J, Wang P, Thomas BB, Humayun MS, Zhou Q. Potential of ultrasound stimulation and sonogenetics in vision restoration: a narrative review. Neural Regen Res 2025; 20:3501-3516. [PMID: 39688549 PMCID: PMC11974640 DOI: 10.4103/nrr.nrr-d-24-00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Vision restoration presents a considerable challenge in the realm of regenerative medicine, while recent progress in ultrasound stimulation has displayed potential as a non-invasive therapeutic approach. This narrative review offers a comprehensive overview of current research on ultrasound-stimulated neuromodulation, emphasizing its potential as a treatment modality for various nerve injuries. By examining of the efficacy of different types of ultrasound stimulation in modulating peripheral and optic nerves, we can delve into their underlying molecular mechanisms. Furthermore, the review underscores the potential of sonogenetics in vision restoration, which involves leveraging pharmacological and genetic manipulations to inhibit or enhance the expression of related mechanosensitive channels, thereby modulating the strength of the ultrasound response. We also address how methods such as viral transcription can be utilized to render specific neurons or organs highly responsive to ultrasound, leading to significantly improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Baoqiang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xunan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Junhao Lin
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | | | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Chu XL, Zhao XX, Liu SY, Li YJ, Ding N, Liu MQ, Li QW, Li Q. Research progress in different physical therapies for treating peripheral nerve injuries. Front Neurol 2025; 16:1508604. [PMID: 40260135 PMCID: PMC12009707 DOI: 10.3389/fneur.2025.1508604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 04/23/2025] Open
Abstract
Physical therapy is gaining recognition as an effective therapeutic approach in the realm of peripheral nerve injury (PNI) research. This article seeks to provide a comprehensive review of the latest advancements, applications, and mechanisms of action of four physical therapy modalities-ultrasound, electrical stimulation, photobiomodulation, and aerobic exercise-in the context of PNI. Ultrasound, characterized by its mechanical and thermal effects, is widely regarded as an effective non-invasive or minimally invasive method for neural modulation. Electrical stimulation therapy, a prevalent technique in PNI treatment, entails the application of electric currents to stimulate nerve and muscle tissues, thereby facilitating nerve regeneration and mitigating muscle atrophy. Photobiomodulation, a process that influences cell metabolism through the absorption of photon energy, is closely associated with neural regeneration in the field of rehabilitation medicine. Additionally, aerobic exercise, a popular form of physical activity, serves to enhance blood circulation and improve neuronal function. The article discusses various physical therapy methods for peripheral nerve injuries, including hyperbaric oxygen therapy, magnetic therapy, and biofeedback therapy, in addition to traditional approaches. Despite advancements, challenges in nerve injury treatment persist, such as the need for standardized treatment protocols, consideration of individual variations, and assessment of long-term effectiveness. Future research is needed to address these issues. In summary, this article offers theoretical and empirical evidence supporting the utilization of physical therapy in the management of PNI. This research aims to promote further research and clinical practice in this field, contributing to enhancing patient quality of life and recovery outcomes.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Xiao-Xuan Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Shuai-Yi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ya-Jie Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ning Ding
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Min-Qi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qing-Wen Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| |
Collapse
|
3
|
Liu Y, Tanaka E. Pathogenesis, Diagnosis, and Management of Trigeminal Neuralgia: A Narrative Review. J Clin Med 2025; 14:528. [PMID: 39860534 PMCID: PMC11765769 DOI: 10.3390/jcm14020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Trigeminal neuralgia (TN) is an excruciating neurological disorder characterized by intense, stimulus-induced, and transient facial stabbing pain. The classification of TN has changed as a result of new discoveries in the last decade regarding its symptomatology, pathogenesis, and management. Because different types of facial pain have different clinical therapy and neuroimaging interpretations, a precise diagnosis is essential. Diagnosis should include magnetic resonance imaging with specific sequences to rule out secondary causes and to identify possible neurovascular contact. The purpose of demonstrating a neurovascular contact is to aid in surgical decision making, not to validate a diagnosis. Microvascular decompression is the first-line procedure for individuals who do not respond to medical management, whereas carbamazepine and oxcarbazepine are the preferred medications for long-term care. New developments in animal models and neuroimaging methods will shed more light on the biology and etiology of TN. This paper reviews the pathogenesis, the clinical features, the diagnosis, and the management of TN. Furthermore, the potential role of low-intensity pulsed ultrasound in neurological disorders is discussed.
Collapse
Affiliation(s)
- Yao Liu
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China;
| | - Eiji Tanaka
- Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China;
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| |
Collapse
|
4
|
Zhai X, Wang Y. Physical modulation and peripheral nerve regeneration: a literature review. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:32. [PMID: 39710804 DOI: 10.1186/s13619-024-00215-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/28/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
Peripheral nerve injury (PNI) usually causes severe motor, sensory and autonomic dysfunction. In addition to direct surgical repair, rehabilitation exercises, and traditional physical stimuli, for example, electrical stimulation, have been applied in promoting the clinical recovery of PNI for a long time but showed low efficiency. Recently, significant progress has been made in new physical modulation to promote peripheral nerve regeneration. We hereby review current progress on the mechanism of peripheral nerve regeneration after injury and summarize the new findings and evidence for the application of physical modulation, including electrical stimulation, light, ultrasound, magnetic stimulation, and mechanical stretching in experimental studies and the clinical treatment of patients with PNI.
Collapse
Affiliation(s)
- Xiangwen Zhai
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuzhong Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong Province, China.
- Medical Research Centre, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
5
|
Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS Therapy on the Expression of Genes Related to Peripheral Nerve Regeneration in Schwann Cells. Int J Mol Sci 2024; 25:12791. [PMID: 39684499 DOI: 10.3390/ijms252312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Peripheral nerve regeneration remains a major challenge in neuroscience, despite advancements in understanding its mechanisms. Current treatments, including nerve transplantation and drug therapies, face limitations such as invasiveness and incomplete recovery of nerve function. Physical therapies, like pulsed electromagnetic fields (PEMF) and low-intensity ultrasound (LIPUS), are gaining attention for their potential to enhance regeneration. This study analyzes the effects of PEMF and LIPUS on gene expression in human primary Schwann cells, which are crucial for nerve myelination and repair. Key genes involved in neurotrophin signaling (NGF, BDNF), inflammation (IL-1β, IL-6, IL-10, TNF-α, TGF-β), and regeneration (CRYAB, CSPG, Ki67) were assessed. The results of this study reveal that combined PEMF and LIPUS therapies promote Schwann cell proliferation, reduce inflammation, and improve the regenerative environment, offering potential for optimizing these therapies for clinical use in regenerative medicine.
Collapse
Affiliation(s)
- Mateusz Siwak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Danuta Piotrzkowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
6
|
Redolfi Riva E, Özkan M, Stellacci F, Micera S. Combining external physical stimuli and nanostructured materials for upregulating pro-regenerative cellular pathways in peripheral nerve repair. Front Cell Dev Biol 2024; 12:1491260. [PMID: 39568507 PMCID: PMC11576468 DOI: 10.3389/fcell.2024.1491260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Peripheral nerve repair remains a major clinical challenge, particularly in the pursuit of therapeutic approaches that ensure adequate recovery of patient's activity of daily living. Autografts are the gold standard in clinical practice for restoring lost sensorimotor functions nowadays. However, autografts have notable drawbacks, including dimensional mismatches and the need to sacrifice one function to restore another. Engineered nerve guidance conduits have therefore emerged as promising alternatives. While these conduits show surgical potential, their clinical use is currently limited to the repair of minor injuries, as their ability to reinnervate limiting gap lesions is still unsatisfactory. Therefore, improving patient functional recovery requires a deeper understanding of the cellular mechanisms involved in peripheral nerve regeneration and the development of therapeutic strategies that can precisely modulate these processes. Interest has grown in the use of external energy sources, such as light, ultrasound, electrical, and magnetic fields, to activate cellular pathways related to proliferation, differentiation, and migration. Recent research has explored combining these energy sources with tailored nanostructured materials as nanotransducers to enhance selectivity towards the target cells. This review aims to present the recent findings on this innovative strategy, discussing its potential to support nerve regeneration and its viability as an alternative to autologous transplantation.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Melis Özkan
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Bioengineering and Global Health Institute, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Bordett R, Danazumi KB, Wijekoon S, Garcia CJ, Abdulmalik S, Kumbar SG. Advancements in stimulation therapies for peripheral nerve regeneration. Biomed Mater 2024; 19:052008. [PMID: 39025114 PMCID: PMC11425301 DOI: 10.1088/1748-605x/ad651d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Soft-tissue injuries affecting muscles, nerves, vasculature, tendons, and ligaments often diminish the quality of life due to pain, loss of function, and financial burdens. Both natural healing and surgical interventions can result in scarring, which potentially may impede functional recovery and lead to persistent pain. Scar tissue, characterized by a highly disorganized fibrotic extracellular matrix, may serve as a physical barrier to regeneration and drug delivery. While approaches such as drugs, biomaterials, cells, external stimulation, and other physical forces show promise in mitigating scarring and promoting regenerative healing, their implementation remains limited and challenging. Ultrasound, laser, electrical, and magnetic forms of external stimulation have been utilized to promote soft tissue as well as neural tissue regeneration. After stimulation, neural tissues experience increased proliferation of Schwann cells, secretion of neurotropic factors, production of myelin, and growth of vasculature, all aimed at supporting axon regeneration and innervation. Yet, the outcomes of healing vary depending on the pathophysiology of the damaged nerve, the timing of stimulation following injury, and the specific parameters of stimulation employed. Increased treatment intensity and duration have been noted to hinder the healing process by inducing tissue damage. These stimulation modalities, either alone or in combination with nerve guidance conduits and scaffolds, have been demonstrated to promote healing. However, the literature currently lacks a detailed understanding of the stimulation parameters used for nerve healing applications. In this article, we aim to address this gap by summarizing existing reports and providing an overview of stimulation parameters alongside their associated healing outcomes.
Collapse
Affiliation(s)
- Rosalie Bordett
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Khadija B Danazumi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Suranji Wijekoon
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Christopher J Garcia
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Sangamesh G Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
8
|
Izhiman Y, Esfandiari L. Emerging role of extracellular vesicles and exogenous stimuli in molecular mechanisms of peripheral nerve regeneration. Front Cell Neurosci 2024; 18:1368630. [PMID: 38572074 PMCID: PMC10989355 DOI: 10.3389/fncel.2024.1368630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Peripheral nerve injuries lead to significant morbidity and adversely affect quality of life. The peripheral nervous system harbors the unique trait of autonomous regeneration; however, achieving successful regeneration remains uncertain. Research continues to augment and expedite successful peripheral nerve recovery, offering promising strategies for promoting peripheral nerve regeneration (PNR). These include leveraging extracellular vesicle (EV) communication and harnessing cellular activation through electrical and mechanical stimulation. Small extracellular vesicles (sEVs), 30-150 nm in diameter, play a pivotal role in regulating intercellular communication within the regenerative cascade, specifically among nerve cells, Schwann cells, macrophages, and fibroblasts. Furthermore, the utilization of exogenous stimuli, including electrical stimulation (ES), ultrasound stimulation (US), and extracorporeal shock wave therapy (ESWT), offers remarkable advantages in accelerating and augmenting PNR. Moreover, the application of mechanical and electrical stimuli can potentially affect the biogenesis and secretion of sEVs, consequently leading to potential improvements in PNR. In this review article, we comprehensively delve into the intricacies of cell-to-cell communication facilitated by sEVs and the key regulatory signaling pathways governing PNR. Additionally, we investigated the broad-ranging impacts of ES, US, and ESWT on PNR.
Collapse
Affiliation(s)
- Yara Izhiman
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Esfandiari Laboratory, Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
9
|
Westphal JA, Bryan AE, Krutko M, Esfandiari L, Schutte SC, Harris GM. Innervation of an Ultrasound-Mediated PVDF-TrFE Scaffold for Skin-Tissue Engineering. Biomimetics (Basel) 2023; 9:2. [PMID: 38275450 PMCID: PMC11154284 DOI: 10.3390/biomimetics9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, electrospun polyvinylidene-trifluoroethylene (PVDF-TrFE) was utilized for its biocompatibility, mechanics, and piezoelectric properties to promote Schwann cell (SC) elongation and sensory neuron (SN) extension. PVDF-TrFE electrospun scaffolds were characterized over a variety of electrospinning parameters (1, 2, and 3 h aligned and unaligned electrospun fibers) to determine ideal thickness, porosity, and tensile strength for use as an engineered skin tissue. PVDF-TrFE was electrically activated through mechanical deformation using low-intensity pulsed ultrasound (LIPUS) waves as a non-invasive means to trigger piezoelectric properties of the scaffold and deliver electric potential to cells. Using this therapeutic modality, neurite integration in tissue-engineered skin substitutes (TESSs) was quantified including neurite alignment, elongation, and vertical perforation into PVDF-TrFE scaffolds. Results show LIPUS stimulation promoted cell alignment on aligned scaffolds. Further, stimulation significantly increased SC elongation and SN extension separately and in coculture on aligned scaffolds but significantly decreased elongation and extension on unaligned scaffolds. This was also seen in cell perforation depth analysis into scaffolds which indicated LIPUS enhanced perforation of SCs, SNs, and cocultures on scaffolds. Taken together, this work demonstrates the immense potential for non-invasive electric stimulation of an in vitro tissue-engineered-skin model.
Collapse
Affiliation(s)
- Jennifer A. Westphal
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
| | - Andrew E. Bryan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Maksym Krutko
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Electrical and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Stacey C. Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
| | - Greg M. Harris
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (J.A.W.); (M.K.); (L.E.); (S.C.S.)
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA;
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| |
Collapse
|
10
|
Bryan AE, Krutko M, Westphal J, Sheth M, Esfandiari L, Harris GM. Ultrasound-Activated Piezoelectric Polyvinylidene Fluoride-Trifluoroethylene Scaffolds for Tissue Engineering Applications. Mil Med 2023; 188:61-66. [PMID: 37948229 DOI: 10.1093/milmed/usad018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 11/12/2023] Open
Abstract
Severe peripheral nervous system (PNS) injuries have limited options for therapeutic solutions to regain functional recovery. This can be attributed in part to the lack of regeneration pathways promoted by recapitulating chemical, physical, and electrical cues to direct nerve guidance. To address this, we examined ultrasonic stimulation of a piezoelectric polyvinylidene fluoride-triflouroethylene (PVDF-TrFE) scaffold as a potentially clinically relevant therapy for PNS regeneration. Owing to the piezoelectric modality of PVDF-TrFE, we hypothesize that ultrasound stimulation will activate the scaffold to electrically stimulate cells in response to the mechanical deformation mediated by sound waves. Biocompatible PVDF-TrFE scaffolds were fabricated to be used as an ultrasound-activated, piezoelectric biomaterial to enhance cellular activity for PNS applications. NIH-3T3 fibroblasts were cultured on PVDF-TrFE nanofibers and stimulated with low-, medium-, or high-powered ultrasound. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed on fibroblasts to measure the metabolic activity of the cells following stimulation. MTT assays showed that ultrasound-stimulated fibroblasts on PVDF-TrFE scaffolds had increased metabolic activity as power was increased, whereas on plain polystyrene, an opposite trend was observed where cells had a decreased metabolic activity with ascending levels of ultrasound power. Ultrasound-stimulated PVDF-TrFE nanofibers hold exciting potential as a therapy for PNS injuries by promoting increased metabolic activity and proliferation. The ability to noninvasively stimulate implantable piezoelectric nanofibers to promote mechanical and electrical stimulation for nerve repair offers a promising benefit to severe trauma patients.
Collapse
Affiliation(s)
- Andrew E Bryan
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Maksym Krutko
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jennifer Westphal
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Greg M Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
11
|
Li Z, Ye K, Yin Y, Zhou J, Li D, Gan Y, Peng D, Zhao L, Xiao M, Zhou Y, Dai Y, Tang Y. Low-intensity pulsed ultrasound ameliorates erectile dysfunction induced by bilateral cavernous nerve injury through enhancing Schwann cell-mediated cavernous nerve regeneration. Andrology 2023; 11:1188-1202. [PMID: 36762774 DOI: 10.1111/andr.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Cavernous nerve injury-induced erectile dysfunction caused by pelvic surgery or trauma is refractory to conventional medications and required an alternative treatment. Low-intensity pulsed ultrasound is a noninvasive mechanical therapy that promotes nerve regeneration. OBJECTIVES To investigate the therapeutic effect and potential mechanism of low-intensity pulsed ultrasound in the treatment of neurogenic erectile dysfunction. MATERIALS AND METHODS Thirty rats were randomly divided into the sham-operated group, bilateral cavernous nerve injury group, and bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. The erectile function was assessed 3 weeks after daily low-intensity pulsed ultrasound treatment. The penile tissues and cavernous nerve tissues were harvested and subjected to histologic analysis. Primary Schwann cells and explants were extracted from adult rats. The effects of low-intensity pulsed ultrasound on proliferation, migration, and nerve growth factor expression of Schwann cells and axonal elongation were examined in vitro. RNA sequencing and western blot assay were applied to predict and verify the molecular mechanism of low-intensity pulsed ultrasound-induced Schwann cell activation. RESULTS Our study showed that low-intensity pulsed ultrasound promoted Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. Meanwhile, low-intensity pulsed ultrasound exhibits a stronger ability to enhance Schwann cells-mediated neurite outgrowth of major pelvic ganglion neurons and major pelvic ganglion/cavernous nerve explants in vitro. In vivo experiments demonstrated that the erectile function of the rats in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group was significantly higher than those in the bilateral cavernous nerve injury groups. Moreover, the expression levels of smooth muscle and cavernous endothelium also increased significantly in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group. In addition, we observed the higher density and number of cavernous nerve regenerating axons in the bilateral cavernous nerve injury + low-intensity pulsed ultrasound group, indicating that low-intensity pulsed ultrasound promotes axonal regeneration following cavernous nerve injury in vivo. RNA sequencing analysis and bioinformatic analysis suggested that low-intensity pulsed ultrasound might trigger the activation of the PI3K/Akt pathway. Western blot assay confirmed that low-intensity pulsed ultrasound activated Schwann cells through TrkB/Akt/CREB signaling. CONCLUSIONS Low-intensity pulsed ultrasound promoted nerve regeneration and ameliorated erectile function by enhancing Schwann cells proliferation, migration, and neurotrophic factor nerve growth factor expression. The TrkB/Akt/CREB axis is the possible mechanism of low-intensity pulsed ultrasound-mediated Schwann cell activation. Low-intensity pulsed ultrasound-based therapy could be a novel potential treatment strategy for cavernous nerve injury-induced neurogenic erectile dysfunction.
Collapse
Affiliation(s)
- Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kun Ye
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Jun Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Dongjie Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongyi Peng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
12
|
Liu X, Zou D, Hu Y, He Y, Lu J. Research Progress of Low-Intensity Pulsed Ultrasound in the Repair of Peripheral Nerve Injury. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:414-428. [PMID: 36785967 DOI: 10.1089/ten.teb.2022.0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xuling Liu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Derong Zou
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yushi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Kawai H, Ito A, Kawaguchi A, Nagai-Tanima M, Nakahara R, Xu S, Kuroki H. Ultrasound therapy for a week promotes regeneration and reduces pro-inflammatory macrophages in a rat sciatic nerve autograft model. Sci Rep 2023; 13:11494. [PMID: 37460651 DOI: 10.1038/s41598-023-38630-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Peripheral nerve injury causes long-term motor dysfunction. Ultrasound (US) therapy is expected to accelerate peripheral nerve regeneration. However, its optimal usage and effects on macrophage phenotypes during peripheral nerve regeneration remain unknown. In this study, we investigated the optimal duration of US therapy and its effects on macrophage phenotype. Twenty-seven rats with autologous sciatic nerve grafting were divided into three groups: two received US therapy (1 MHz frequency, intensity of 140 mW/cm2, 20% duty cycle, 5 min/day) for one (US1) or 4 weeks (US4), and one group received sham stimulation. Immunohistochemistry was performed 3 and 7 days after injury in another set of 12 rats. Eight weeks after the injury, the compound muscle action potential amplitude of the gastrocnemius in the US1 and US4 groups was significantly higher than that in the sham group. The toe-spreading test showed functional recovery, whereas the gait pattern during treadmill walking did not recover. There were no significant differences in motor function, histomorphometry, or muscle weight between groups. Immunohistochemistry showed that US therapy decreased the number of pro-inflammatory macrophages seven days after injury. Therefore, US therapy for both one or 4 weeks can similarly promote reinnervation and reduce proinflammatory macrophages in autograft model rats.
Collapse
Affiliation(s)
- Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Asuka Kawaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Momoko Nagai-Tanima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
14
|
Xu S, Ito A, Wang T, Kawai H, Aoyama T, Kuroki H. Ultrasound Therapy of Injury Site Modulates Gene and Protein Expressions in the Dorsal Root Ganglion in a Sciatic Nerve Crush Injury Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2502-2511. [PMID: 36180311 DOI: 10.1016/j.ultrasmedbio.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to verify the effects of ultrasound on dorsal root ganglion (DRG) neurons at the injury site in a rat model of sciatic nerve crush injury. We evaluated the mRNA expression of neurotrophic and pro-inflammatory factors by quantitative reverse transcription polymerase chain reaction 7 and 14 d post-injury. We also evaluated the protein levels of brain-derived neurotrophic factor (BDNF) 7 and 14 d post-injury. Axon regeneration and motor function analyses were performed 21 days after injury to confirm the facilitative effect of ultrasound on nerve regeneration. In the ultrasound group, BDNF and interleukin-6 mRNA expression of the DRG was significantly reduced 7 d post-injury. Compared with the sham group, the BDNF protein expression of the DRG in the ultrasound group remained at a higher level 14 d post-injury. Motor function, myelinated fiber density and myelin sheath thickness were significantly higher in the ultrasound group than in the sham group 21 d post-injury. These results indicate that ultrasound therapy at the injury site promotes nerve regeneration and modulates gene and protein expression in the DRG of a rat model of a sciatic nerve crush injury.
Collapse
Affiliation(s)
- Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tianshu Wang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Hizay A, Ozsoy U, Savas K, Yakut-Uzuner S, Ozbey O, Akkan SS, Bahsi P. Effect of Ultrasound Therapy on Expression of Vascular Endothelial Growth Factor, Vascular Endothelial Growth Factor Receptors, CD31 and Functional Recovery After Facial Nerve Injury. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1453-1467. [PMID: 35534304 DOI: 10.1016/j.ultrasmedbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Functional recovery is provided by some neurotrophic factors released from the near vicinity of the injury site. Ultrasound treatment is known to increase neurotrophic factor expression. This study was aimed at determining the effect of ultrasound treatment on the expression of vascular endothelial growth factor (VEGF), its receptors and new vessel formation after facial nerve injury. Sixty-four Wistar rats were divided into four groups: control (group 1), sham (group 2), facial-facial coaptation (group 3), and facial-facial coaptation and ultrasound treatment (group 4). Animals in each group were evaluated on the 14th and 28th days. Immunohistochemical staining and electrophysiological and gene-level evaluations were performed for the expression of VEGF and its receptors. When the results were evaluated, it was determined that VEGF, VEGFR1 (VEGF receptor 1), VEGFR2 (VEGF receptor 2) and CD31 levels were significantly higher in groups 3 and 4 compared with the control and sham groups. The increase in these values was more prominent after 28 d of ultrasound treatment than all groups. Electrophysiological results revealed similar evident functional improvement in group 4 with decreased latency and increased amplitudes compared with group 3. Our findings suggest that ultrasound treatment might promote injured facial nerve regeneration by stimulating release of VEGF and its receptors and may result in functional improvement.
Collapse
Affiliation(s)
- Arzu Hizay
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Umut Ozsoy
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Kamil Savas
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sezin Yakut-Uzuner
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozlem Ozbey
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Simla Su Akkan
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Pinar Bahsi
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
16
|
Bilir-Yildiz B, Sunay FB, Yilmaz HF, Bozkurt-Girit O. Low-intensity low-frequency pulsed ultrasound ameliorates sciatic nerve dysfunction in a rat model of cisplatin-induced peripheral neuropathy. Sci Rep 2022; 12:8125. [PMID: 35581281 PMCID: PMC9114430 DOI: 10.1038/s41598-022-11978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a neurological complication that frequently occurs during chemotherapeutic intervention, resulting in damaged myelin sheath, motor weakness and/or sensory impairment. This study aims to investigate the therapeutic efficiency of low-intensity pulsed low-frequency ultrasound on cisplatin-induced peripheral neuropathy. Rats were randomly divided into five experimental groups as control, cisplatin administration, 10 mg/kg melatonin treatment after cisplatin administration, 1 MHz frequency 0.5 W/cm2 pulsed ultrasound treatment after cisplatin administration and 1 MHz frequency 1.5 W/cm2 pulsed ultrasound treatment after cisplatin administration. Chemical neuropathy was induced by the injection of 3 mg/kg/week of cisplatin (i.p.) for 5 weeks. Afterwards, melatonin and pulsed ultrasound treatments were applied for 15 consecutive days. Cisplatin administration resulted in a decrease in nociceptive pain perception and nerve conduction velocities together with a decrease in myelin thickness and diameters of axons and myelinated fibers, indicating a dysfunction and degeneration in sciatic nerves. In addition, cisplatin administration led to a decrease, in superoxide dismutase activity, and an increase in malondialdehyde and IL-1β levels together with an increase in caspase-3 protein expression levels and a decrease in Bcl-2 and Parkin levels. The ultrasound treatments resulted in an increase in nociceptive pain perception and sciatic nerve conduction; led to a decrease in oxidative stress and inflammation, restored nerve degeneration and regulated apoptosis and mitophagy. Taken together, low-intensity pulsed low-frequency ultrasound was efficient in restoring the alterations attributable to cisplatin-induced peripheral neuropathy, and warrants further investigations.
Collapse
Affiliation(s)
- Busra Bilir-Yildiz
- Department of Biophysics, School of Medicine, Aydın Adnan Menderes University, Aydın, 09010, Turkey
| | - Fatma Bahar Sunay
- Department of Histology and Embryology, School of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Hatice Fulya Yilmaz
- Department of Biophysics, School of Medicine, Aydın Adnan Menderes University, Aydın, 09010, Turkey
| | - Ozlem Bozkurt-Girit
- Department of Biophysics, School of Medicine, Aydın Adnan Menderes University, Aydın, 09010, Turkey.
| |
Collapse
|
17
|
Hong YR, Lee EH, Park KS, Han M, Kim KT, Park J. Ultrasound stimulation improves inflammatory resolution, neuroprotection, and functional recovery after spinal cord injury. Sci Rep 2022; 12:3636. [PMID: 35256617 PMCID: PMC8901758 DOI: 10.1038/s41598-022-07114-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/03/2022] [Indexed: 01/29/2023] Open
Abstract
Spinal cord injury (SCI) is associated with limited functional recovery. Despite advances in neuroscience, realistic therapeutic treatments for SCI remain unavailable. In this study, the effects of non-invasive ultrasound (US) treatment on behavior and inflammatory responses were evaluated in a rat model of SCI. Adult female Sprague–Dawley rats were subjected to spinal cord contusion injury. Two different US parameters (SCIU5: 5% and SCIU40: 40% duty cycle) were applied, and their effects on behavioral recovery after SCI were quantified. Tissue and neuronal responses were detected. Immunofluorescence was used to detect inflammatory markers. In the rat model of SCI, motor function was more effectively restored, and the lesion cavity area was smaller in the SCIU5 group. Furthermore, the SCIU5 protocol elicited an anti-inflammatory response at the injury site by reducing degenerative FJC-labeled neurons, macrophage/microglia activation, and infiltration. Thus, the lesion area decreased, and tissue density increased. Meanwhile, the SCIU40 protocol did not improve motor function or induce an anti-inflammatory response at the injury site. The SCIU5 protocol effectively accelerated the rate of improved exercise performance in the rat model while reducing inflammation. Accordingly, appropriate US stimulation may represent a promising treatment modality for SCI with beneficial anti-inflammatory effects.
Collapse
|
18
|
Kawai H, Ito A, Wang T, Xu S, Kuroki H. Investigating the Optimal Initiation Time of Ultrasound Therapy for Peripheral Nerve Regeneration after Axonotmesis in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:304-312. [PMID: 34740495 DOI: 10.1016/j.ultrasmedbio.2021.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
This study was aimed at identifying the optimal initiation time of ultrasound (US) therapy for peripheral nerve regeneration after axonotmesis. Thirty-six rats with sciatic nerve crush injury were divided into four groups that received US irradiation initiated 1, 7 or 14 d after injury, or sham stimulation for 4 wk. Motor function analysis was conducted weekly; however, there was no significant improvement attributed to US treatment. Four weeks after injury, compound muscle action potential amplitude values of the group in which US irradiation was initiated 1 d after the injury exhibited significant improvement compared with the sham stimulation group. In addition, myelin sheath thickness was significantly greater in the 1-d group than in other groups. These results indicate that US treatment initiated 1 d after peripheral nerve injury promotes maximum regeneration.
Collapse
Affiliation(s)
- Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tianshu Wang
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Acheta J, Stephens SBZ, Belin S, Poitelon Y. Therapeutic Low-Intensity Ultrasound for Peripheral Nerve Regeneration – A Schwann Cell Perspective. Front Cell Neurosci 2022; 15:812588. [PMID: 35069118 PMCID: PMC8766802 DOI: 10.3389/fncel.2021.812588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injuries are common conditions that can arise from trauma (e.g., compression, severance) and can lead to neuropathic pain as well as motor and sensory deficits. Although much knowledge exists on the mechanisms of injury and nerve regeneration, treatments that ensure functional recovery following peripheral nerve injury are limited. Schwann cells, the supporting glial cells in peripheral nerves, orchestrate the response to nerve injury, by converting to a “repair” phenotype. However, nerve regeneration is often suboptimal in humans as the repair Schwann cells do not sustain their repair phenotype long enough to support the prolonged regeneration times required for successful nerve regrowth. Thus, numerous strategies are currently focused on promoting and extending the Schwann cells repair phenotype. Low-intensity ultrasound (LIU) is a non-destructive therapeutic approach which has been shown to facilitate peripheral nerve regeneration following nerve injury in rodents. Still, clinical trials in humans are scarce and limited to small population sizes. The benefit of LIU on nerve regeneration could possibly be mediated through the repair Schwann cells. In this review, we discuss the known and possible molecular mechanisms activated in response to LIU in repair Schwann cells to draw support and attention to LIU as a compelling regenerative treatment for peripheral nerve injury.
Collapse
|
20
|
Ito A, Araya Y, Kawai H, Kuroki H. Ultrasound Stimulation Inhibits Morphological Degeneration of Motor Endplates in the Denervated Skeletal Muscle of Rats. Neurosci Insights 2022; 17:26331055221138508. [PMID: 36420426 PMCID: PMC9677316 DOI: 10.1177/26331055221138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Recovery of motor function after peripheral nerve injury requires treatment of
the neuromuscular junction (NMJ), as well as the injured nerve and skeletal
muscle. The purpose of this study was to examine the effects of ultrasound (US)
stimulation on NMJ degeneration after denervation using a rat model of peroneal
nerve transection. Twelve-week-old male Wistar rats were randomly assigned to 3
groups: US stimulation, sham stimulation, and intact. US or sham stimulation was
performed on the left tibialis anterior (TA) muscle starting the day after
peroneal nerve transection for 5 minutes daily under anesthesia. Four weeks
later, the number and morphology of the motor endplates were analyzed to assess
NMJ in the TA muscle. The endplates were classified as normal, partially
fragmented, or fully fragmented for morphometric analysis. In addition, the
number of terminal Schwann cells (tSCs) per endplate and percentage of endplates
with tSCs (tSC retention percentage) were calculated to evaluate the effect of
tSCs on NMJs. Our results showed that endplates degenerated 4 weeks after
transection, with a decrease in the normal type and an increase in the fully
fragmented type in both the US and sham groups compared to the intact group.
Furthermore, the US group showed significant suppression of the normal type
decrease and a fully fragmented type increase compared to the sham group. These
results suggest that US stimulation inhibits endplate degeneration in denervated
TA muscles. In contrast, the number of endplates and tSC and tSC retention
percentages were not significantly different between the US and sham groups.
Further investigations are required to determine the molecular mechanisms by
which US stimulation suppresses degeneration.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Araya
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Wang T, Ito A, Xu S, Kawai H, Kuroki H, Aoyama T. Low-Intensity Pulsed Ultrasound Prompts Both Functional and Histologic Improvements While Upregulating the Brain-Derived Neurotrophic Factor Expression after Sciatic Crush Injury in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1586-1595. [PMID: 33745752 DOI: 10.1016/j.ultrasmedbio.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/22/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to determine that low-intensity pulsed ultrasound (LIPUS) at an intensity of 140 mW/cm2 promotes functional and histologic improvements in sciatic nerve crush injury in a rat model and to investigate changes over time in relevant growth factors and receptors, exploring the mechanism of LIPUS in the recovery process after injury. Toe angle in the toe-off phase, regenerative axonal length, myelinated nerve fiber density, diameter of myelinated nerve fiber, axon diameter and myelin sheath thickness were significantly higher in the LIPUS group than in the sham group. Gene and protein expression of brain-derived neurotrophic factor (BDNF) was upregulated in the LIPUS group. In conclusion, LIPUS contributed to rapid functional and histologic improvement and upregulated BDNF expression after sciatic nerve crush injury in rats.
Collapse
Affiliation(s)
- Tianshu Wang
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|