1
|
Wu Z, Deng B, Shen Y, Li X, Li J, Li Y, Ma S, Pan Y, Ding F. Acyloxyacyl Hydrolase Protects against Kidney Injury via Inhibition of Tubular CD74-Macrophage Crosstalk. Int J Biol Sci 2024; 20:3061-3075. [PMID: 38904010 PMCID: PMC11186370 DOI: 10.7150/ijbs.91237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Renal fibrosis is the common pathway in the progression of chronic kidney disease (CKD). Acyloxyacyl hydrolase (AOAH) is expressed in various phagocytes and is highly expressed in proximal tubular epithelial cells (PTECs). Research shows that AOAH plays a critical role in infections and chronic inflammatory diseases, although its role in kidney injury is unknown. Here, we found that AOAH deletion led to exacerbated kidney injury and fibrosis after folic acid (FA) administration, which was reversed by overexpression of Aoah in kidneys. ScRNA-seq revealed that Aoah-/- mice exhibited increased subpopulation of CD74+ PTECs, though the percentage of total PTECs were decreased compared to WT mice after FA treatment. Additionally, exacerbated kidney injury and fibrosis seen in Aoah-/- mice was attenuated via administration of methyl ester of (S, R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1), an inhibitor of macrophage inhibition factor (MIF) and CD74 binding. Finally, AOAH expression was found positively correlated with estimated glomerular filtration rate while negatively correlated with the degree of renal fibrosis in kidneys of CKD patients. Thus, our work indicates that AOAH protects against kidney injury and fibrosis by inhibiting renal tubular epithelial cells CD74 signaling pathways. Targeting kidney AOAH represents a promising strategy to prevent renal fibrosis progression.
Collapse
Affiliation(s)
- Zhenkai Wu
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqi Shen
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuezhu Li
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaolun Li
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Ma
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Pan
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research
| |
Collapse
|
2
|
Rahman-Enyart A, Yaggie RE, Bollinger JL, Arvanitis C, Winter DR, Schaeffer AJ, Klumpp DJ. Acyloxyacyl hydrolase regulates microglia-mediated pelvic pain. PLoS One 2022; 17:e0269140. [PMID: 35980963 PMCID: PMC9387837 DOI: 10.1371/journal.pone.0269140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic pelvic pain conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) remain clinical and mechanistic enigmas. Microglia are resident immune cells of the central nervous system (CNS) that respond to changes in the gut microbiome, and studies have linked microglial activation to acute and chronic pain in a variety of models, including pelvic pain. We have previously reported that mice deficient for the lipase acyloxyacyl hydrolase (AOAH) develop pelvic allodynia and exhibit symptoms, comorbidities, and gut dysbiosis mimicking IC/BPS. Here, we assessed the role of AOAH in microglial activation and pelvic pain. RNAseq analyses using the ARCHS4 database and confocal microscopy revealed that AOAH is highly expressed in wild type microglia but at low levels in astrocytes, suggesting a functional role for AOAH in microglia. Pharmacologic ablation of CNS microglia with PLX5622 resulted in decreased pelvic allodynia in AOAH-deficient mice and resurgence of pelvic pain upon drug washout. Skeletal analyses revealed that AOAH-deficient mice have an activated microglia morphology in the medial prefrontal cortex and paraventricular nucleus, brain regions associated with pain modulation. Because microglia express Toll-like receptors and respond to microbial components, we also examine the potential role of dysbiosis in microglial activation. Consistent with our hypothesis of microglia activation by leakage of gut microbes, we observed increased serum endotoxins in AOAH-deficient mice and increased activation of cultured BV2 microglial cells by stool of AOAH-deficient mice. Together, these findings demonstrate a role for AOAH in microglial modulation of pelvic pain and thus identify a novel therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Afrida Rahman-Enyart
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Currently Proteintech Group Incorporated, Rosemont, Illinois, United States of America
| | - Ryan E. Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Justin L. Bollinger
- Department of Pharmacology & Systems Physiology, College of Medicine University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Constadina Arvanitis
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Advanced Microscopy & Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Deborah R. Winter
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Anthony J. Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David J. Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
3
|
Rahman-Enyart A, Yang W, Yaggie RE, White BA, Welge M, Auvil L, Berry M, Bushell C, Rosen JM, Rudick CN, Schaeffer AJ, Klumpp DJ. Acyloxyacyl hydrolase is a host determinant of gut microbiome-mediated pelvic pain. Am J Physiol Regul Integr Comp Physiol 2021; 321:R396-R412. [PMID: 34318715 PMCID: PMC8530758 DOI: 10.1152/ajpregu.00106.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022]
Abstract
Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating condition of chronic pelvic pain often with comorbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in patients with IC/BPS. We identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of gastrointestinal (GI) microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and a "leaky gut" phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Cohousing AOAH-deficient mice with wild-type mice resulted in converged microbiota and altered predicted metagenomes. Cohousing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild-type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiome is a potential therapeutic target for IC/BPS.
Collapse
Affiliation(s)
- Afrida Rahman-Enyart
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Wenbin Yang
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ryan E Yaggie
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bryan A White
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Loretta Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew Berry
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Colleen Bushell
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - John M Rosen
- Department of Gastroenterology, Children's Mercy, Kansas City, Missouri
- Department of Pediatrics, University of Missouri, Kansas City, Missouri
| | - Charles N Rudick
- Clinical Pharmacology and Toxicology, Indiana University School of Medicine, Bloomington, Indiana
| | - Anthony J Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David J Klumpp
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
4
|
Sheetz T, Clemens JQ, Crescenze I. Neuroanatomy of Bladder Pain. CURRENT BLADDER DYSFUNCTION REPORTS 2021. [DOI: 10.1007/s11884-021-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
An Investigation of the Molecular Mechanisms Underlying the Analgesic Effect of Jakyak-Gamcho Decoction: A Network Pharmacology Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6628641. [PMID: 33343676 PMCID: PMC7732394 DOI: 10.1155/2020/6628641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Herbal drugs have drawn substantial interest as effective analgesic agents; however, their therapeutic mechanisms remain to be fully understood. To address this question, we performed a network pharmacology study to explore the system-level mechanisms that underlie the analgesic activity of Jakyak-Gamcho decoction (JGd; Shaoyao-Gancao-Tang in Chinese and Shakuyaku-Kanzo-To in Japanese), an herbal prescription consisting of Paeonia lactiflora Pallas and Glycyrrhiza uralensis Fischer. Based on comprehensive information regarding the pharmacological and chemical properties of the herbal constituents of JGd, we identified 57 active chemical compounds and their 70 pain-associated targets. The JGd targets were determined to be involved in the regulation of diverse biological activities as follows: calcium- and cytokine-mediated signalings, calcium ion concentration and homeostasis, cellular behaviors of muscle and neuronal cells, inflammatory response, and response to chemical, cytokine, drug, and oxidative stress. The targets were further enriched in various pain-associated signalings, including the PI3K-Akt, estrogen, ErbB, neurotrophin, neuroactive ligand-receptor interaction, HIF-1, serotonergic synapse, JAK-STAT, and cAMP pathways. Thus, these data provide a systematic basis to understand the molecular mechanisms underlying the analgesic activity of herbal drugs.
Collapse
|