1
|
Yoshinaga K, Imasaka T, Imasaka T. Femtosecond Laser Ionization Mass Spectrometry for Online Analysis of Human Exhaled Breath. Anal Chem 2024; 96:11542-11548. [PMID: 38972070 DOI: 10.1021/acs.analchem.4c02214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
A variety of organic compounds in human exhaled breath were measured online by mass spectrometry using the fifth (206 nm) and fourth (257 nm) harmonic emissions of a femtosecond ytterbium (Yb) laser as the ionization source. Molecular ions were enhanced significantly by means of resonance-enhanced, two-color, two-photon ionization, which was useful for discrimination of analytes against the background. The limit of detection was 0.15 ppm for acetone in air. The concentration of acetone in exhaled breath was determined for three subjects to average 0.31 ppm, which lies within the range of normal healthy subjects and is appreciably lower than the range for patients with diabetes mellitus. Many other constituents, which could be assigned to acetaldehyde, ethanol, isoprene, phenol, octane, ethyl butanoate, indole, octanol, etc., were observed in the exhaled air. Therefore, the present approach shows potential for use in the online analysis of diabetes mellitus and also for the diagnosis of various diseases, such as COVID-19 and cancers.
Collapse
Affiliation(s)
- Katsunori Yoshinaga
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540:744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Totaro Imasaka
- Kyushu University, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
- Hikari Giken, Co., 2-10-30, Sakurazaka, Chuou-ku Fukuoka 810-0024, Japan
| | - Tomoko Imasaka
- Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540:744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Piell KM, Poulton CC, Stanley CG, Schultz DJ, Klinge CM. Integrated Metabolomics and Transcriptomics Analysis of Anacardic Acid Inhibition of Breast Cancer Cell Viability. Int J Mol Sci 2024; 25:7044. [PMID: 39000156 PMCID: PMC11241071 DOI: 10.3390/ijms25137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Anacardic acid (AnAc) inhibits the growth of estrogen receptor α (ERα)-positive MCF-7 breast cancer (BC) cells and MDA-MB-231 triple-negative BC (TNBC) cells, without affecting primary breast epithelial cells. RNA sequencing (seq) and network analysis of AnAc-treated MCF-7 and MDA-MB-231 cells suggested that AnAc inhibited lipid biosynthesis and increased endoplasmic reticulum stress. To investigate the impact of AnAc on cellular metabolism, a comprehensive untargeted metabolomics analysis was performed in five independent replicates of control versus AnAc-treated MCF-7 and MDA-MB-231 cells and additional TNBC cell lines: MDA-MB-468, BT-20, and HCC1806. An analysis of the global metabolome identified key metabolic differences between control and AnAc-treated within each BC cell line and between MCF-7 and the TNBC cell lines as well as metabolic diversity among the four TNBC cell lines, reflecting TNBC heterogeneity. AnAc-regulated metabolites were involved in alanine, aspartate, glutamate, and glutathione metabolism; the pentose phosphate pathway; and the citric acid cycle. Integration of the transcriptome and metabolome data for MCF-7 and MDA-MB-231 identified Signal transduction: mTORC1 downstream signaling in both cell lines and additional cell-specific pathways. Together, these data suggest that AnAc treatment differentially alters multiple pools of cellular building blocks, nutrients, and transcripts resulting in reduced BC cell viability.
Collapse
Affiliation(s)
- Kellianne M. Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Claire C. Poulton
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Christian G. Stanley
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - David J. Schultz
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
3
|
John TM, Shrestha NK, Hasan L, Pappan K, Birch O, Grove D, Boyle B, Allsworth M, Shrestha P, Procop GW, Dweik RA. Detection of Clostridioides difficileinfection by assessment of exhaled breath volatile organic compounds. J Breath Res 2024; 18:026011. [PMID: 38502958 DOI: 10.1088/1752-7163/ad3572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Clostridioides difficileinfection (CDI) is the leading cause of hospital-acquired infective diarrhea. Current methods for diagnosing CDI have limitations; enzyme immunoassays for toxin have low sensitivity andClostridioides difficilepolymerase chain reaction cannot differentiate infection from colonization. An ideal diagnostic test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection. Assessing volatile organic compounds (VOCs) in exhaled breath may be a useful test for identifying CDI. To identify a wide selection of VOCs in exhaled breath, we used thermal desorption-gas chromatography-mass spectrometry to study breath samples from 17 patients with CDI. Age- and sex-matched patients with diarrhea and negativeC.difficiletesting (no CDI) were used as controls. Of the 65 VOCs tested, 9 were used to build a quadratic discriminant model that showed a final cross-validated accuracy of 74%, a sensitivity of 71%, a specificity of 76%, and a receiver operating characteristic area under the curve of 0.72. If these findings are proven by larger studies, breath VOC analysis may be a helpful adjunctive diagnostic test for CDI.
Collapse
Affiliation(s)
- Teny M John
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Infectious Diseases, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Nabin K Shrestha
- Department of Infectious Diseases, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Leen Hasan
- Department of Internal Medicine, University of Connecticut, Farmington, CT, United States of America
| | - Kirk Pappan
- Owlstone Medical Ltd, Cambridge, United Kingdom
| | - Owen Birch
- Owlstone Medical Ltd, Cambridge, United Kingdom
| | - David Grove
- Department of Pulmonary Medicine and Critical Care, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States of America
| | - Billy Boyle
- Owlstone Medical Ltd, Cambridge, United Kingdom
| | | | - Priyanka Shrestha
- Department of Computer Science, Stanford University, Stanford, CA, United States of America
| | - Gary W Procop
- American Board of Pathology, Farmington, United States of America
| | - Raed A Dweik
- Department of Pulmonary Medicine and Critical Care, Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
4
|
Pereira F, Domingues MR, Vitorino R, Guerra IMS, Santos LL, Ferreira JA, Ferreira R. Unmasking the Metabolite Signature of Bladder Cancer: A Systematic Review. Int J Mol Sci 2024; 25:3347. [PMID: 38542319 PMCID: PMC10970247 DOI: 10.3390/ijms25063347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
Bladder cancer (BCa) research relying on Omics approaches has increased over the last few decades, improving the understanding of BCa pathology and contributing to a better molecular classification of BCa subtypes. To gain further insight into the molecular profile underlying the development of BCa, a systematic literature search was performed in PubMed until November 2023, following the PRISMA guidelines. This search enabled the identification of 25 experimental studies using mass spectrometry or nuclear magnetic resonance-based approaches to characterize the metabolite signature associated with BCa. A total of 1562 metabolites were identified to be altered by BCa in different types of samples. Urine samples displayed a higher likelihood of containing metabolites that are also present in bladder tumor tissue and cell line cultures. The data from these comparisons suggest that increased concentrations of L-isoleucine, L-carnitine, oleamide, palmitamide, arachidonic acid and glycoursodeoxycholic acid and decreased content of deoxycytidine, 5-aminolevulinic acid and pantothenic acid should be considered components of a BCa metabolome signature. Overall, molecular profiling of biological samples by metabolomics is a promising approach to identifying potential biomarkers for early diagnosis of different BCa subtypes. However, future studies are needed to understand its biological significance in the context of BCa and to validate its clinical application.
Collapse
Affiliation(s)
- Francisca Pereira
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - M. Rosário Domingues
- CESAM, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inês M. S. Guerra
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
- CESAM, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Comprehensive Cancer Center, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; (L.L.S.); (J.A.F.)
| | - Rita Ferreira
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (F.P.); (I.M.S.G.); (R.F.)
| |
Collapse
|
5
|
Leemans M, Bauër P, Cuzuel V, Audureau E, Fromantin I. Volatile Organic Compounds Analysis as a Potential Novel Screening Tool for Breast Cancer: A Systematic Review. Biomark Insights 2022; 17:11772719221100709. [PMID: 35645556 PMCID: PMC9134002 DOI: 10.1177/11772719221100709] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction An early diagnosis is crucial in reducing mortality among people who have breast cancer (BC). There is a shortfall of characteristic early clinical symptoms in BC patients, highlighting the importance of investigating new methods for its early detection. A promising novel approach is the analysis of volatile organic compounds (VOCs) produced and emitted through the metabolism of cancer cells. Methods The purpose of this systematic review is to outline the published research regarding BC-associated VOCs. For this, headspace analysis of VOCs was explored in patient-derived body fluids, animal model-derived fluids, and BC cell lines to identify BC-specific VOCs. A systematic search in PubMed and Web of Science databases was conducted according to the PRISMA guidelines. Results Thirty-two studies met the criteria for inclusion in this review. Results highlight that VOC analysis can be promising as a potential novel screening tool. However, results of in vivo, in vitro and case-control studies have delivered inconsistent results leading to a lack of inter-matrix consensus between different VOC sampling methods. Discussion Discrepant VOC results among BC studies have been obtained, highly due to methodological discrepancies. Therefore, methodological issues leading to disparities have been reviewed and recommendations have been made on the standardisation of VOC collection and analysis methods for BC screening, thereby improving future VOC clinical validation studies.
Collapse
Affiliation(s)
| | - Pierre Bauër
- Institut Curie, Ensemble hospitalier, Unité Plaies et Cicatrisation, Paris, France
| | - Vincent Cuzuel
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Caserne Lange, Cergy Pontoise Cedex, France
| | - Etienne Audureau
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Isabelle Fromantin
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Institut Curie, Ensemble hospitalier, Unité Plaies et Cicatrisation, Paris, France
| |
Collapse
|