1
|
Fleet JL, Mackey TE, Jeffrey JD, Good SV, Jeffries KM, Hasler CT. Interindividual behavioural variation in response to elevated CO 2 predicts mRNA transcript abundance of genes related to acid-base regulation in medaka (Oryzias latipes). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106885. [PMID: 38479125 DOI: 10.1016/j.aquatox.2024.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024]
Abstract
Rising carbon dioxide (CO2) in aquatic ecosystems due to climate change is a challenge for aquatic ectotherms. We examined whether interindividual variation in behavioural responses to CO2 could predict how a teleost fish would respond to elevated CO2 for multiple phenotypic and molecular traits. To this end, we first quantified behavioural responses of individuals exposed to acute elevated CO2, and used these to assign individuals as either high or low responders relative to the population mean. Subsequently, we exposed both high and low responders to elevated CO2 for 6 weeks and quantified the effect on body condition, behaviour, and mRNA transcript responses of gill and liver genes associated with relevant physiological processes. Generally, we found few relationships between the phenotypic groups and body condition and behaviour following the CO2 exposure period; however, stark differences between the phenotypic groups with respect to gene transcripts from each tissue related to various processes were found, mostly independent of CO2 exposure. The most pronounced changes were in the gill transcripts related to acid-base regulation, suggesting that the observed behavioural variation used to assign fish to phenotypic groups may have an underlying molecular origin. Should the link between behaviour and gene transcripts be shown to have a fitness advantage and be maintained across generations, interindividual variation in behavioural responses to acute CO2 exposure may be a viable and non-invasive tool to predict future population responses to elevated aquatic CO2.
Collapse
Affiliation(s)
- Jenna L Fleet
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada
| | - Theresa E Mackey
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jennifer D Jeffrey
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada; Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sara V Good
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada; Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kenneth M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Caleb T Hasler
- Department of Biology, The University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada.
| |
Collapse
|
2
|
Tomasetti SJ, Doall MH, Hallinan BD, Kraemer JR, Gobler CJ. Oyster reefs' control of carbonate chemistry-Implications for oyster reef restoration in estuaries subject to coastal ocean acidification. GLOBAL CHANGE BIOLOGY 2023; 29:6572-6590. [PMID: 37777480 DOI: 10.1111/gcb.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Globally, oyster reef restoration is one of the most widely applied coastal restoration interventions. While reefs are focal points of processes tightly linked to the carbonate system such as shell formation and respiration, how these processes alter reef carbonate chemistry relative to the surrounding seawater is unclear. Moreover, coastal systems are increasingly impacted by coastal acidification, which may affect reef carbonate chemistry. Here, we characterized the growth of multiple constructed reefs as well as summer variations in pH and carbonate chemistry of reef-influenced seawater (in the middle of reefs) and ambient seawater (at locations ~50 m outside of reefs) to determine how reef chemistry was altered by the reef community and, in turn, impacts resident oysters. High frequency monitoring across three subtidal constructed reefs revealed reductions of daily mean and minimum pH (by 0.05-0.07 and 0.07-0.12 units, respectively) in seawater overlying reefs relative to ambient seawater (p < .0001). The proportion of pH measurements below 7.5, a threshold shown to negatively impact post-larval oysters, were 1.8×-5.2× higher in reef seawater relative to ambient seawater. Most reef seawater samples (83%) were reduced in total alkalinity relative to ambient seawater samples, suggesting community calcification was a key driver of modified carbonate chemistry. The net metabolic influence of the reef community resulted in reductions of CaCO3 saturation state in 78% of discrete samples, and juvenile oysters placed on reefs exhibited slower shell growth (p < .05) compared to oysters placed outside of reefs. While differences in survival were not detected, reef oysters may benefit from enhanced survival or recruitment at the cost of slowed growth rates. Nevertheless, subtidal restored reef communities modified seawater carbonate chemistry in ways that likely increased oyster vulnerability to acidification, suggesting that carbonate chemistry dynamics warrant consideration when determining site suitability for oyster restoration, particularly under continued climate change.
Collapse
Affiliation(s)
- Stephen J Tomasetti
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, USA
| | - Michael H Doall
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Brendan D Hallinan
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Jeffrey R Kraemer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, New York, USA
| |
Collapse
|
3
|
Pörtner HO. Climate impacts on organisms, ecosystems and human societies: integrating OCLTT into a wider context. J Exp Biol 2021; 224:224/Suppl_1/jeb238360. [PMID: 33627467 DOI: 10.1242/jeb.238360] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Physiological studies contribute to a cause and effect understanding of ecological patterns under climate change and identify the scope and limits of adaptation. Across most habitats, this requires analyzing organism responses to warming, which can be modified by other drivers such as acidification and oxygen loss in aquatic environments or excess humidity or drought on land. Experimental findings support the hypothesis that the width and temperature range of thermal performance curves relate to biogeographical range. Current warming causes range shifts, hypothesized to include constraints in aerobic power budget which in turn are elicited by limitations in oxygen supply capacity in relation to demand. Different metabolic scopes involved may set the borders of both the fundamental niche (at standard metabolic rate) and the realized niche (at routine rate). Relative scopes for aerobic performance also set the capacity of species to interact with others at the ecosystem level. Niche limits and widths are shifting and probably interdependent across life stages, with young adults being least thermally vulnerable. The principles of thermal tolerance and performance may also apply to endotherms including humans, their habitat and human society. Overall, phylogenetically based comparisons would need to consider the life cycle of species as well as organism functional properties across climate zones and time scales. This Review concludes with a perspective on how mechanism-based understanding allows scrutinizing often simplified modeling approaches projecting future climate impacts and risks for aquatic and terrestrial ecosystems. It also emphasizes the usefulness of a consensus-building process among experimentalists for better recognition in the climate debate.
Collapse
Affiliation(s)
- Hans-O Pörtner
- Integrative Ecophysiology section, Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, 27570 Bremetrhaven, Germany
| |
Collapse
|