1
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
2
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
3
|
Ledesma-Dominguez L, Carbajal-Degante E, Moreno-Hagelsieb G, Pérez-Rueda E. DeepReg: a deep learning hybrid model for predicting transcription factors in eukaryotic and prokaryotic genomes. Sci Rep 2024; 14:9155. [PMID: 38644393 PMCID: PMC11551149 DOI: 10.1038/s41598-024-59487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/11/2024] [Indexed: 04/23/2024] Open
Abstract
Deep learning models (DLMs) have gained importance in predicting, detecting, translating, and classifying a diversity of inputs. In bioinformatics, DLMs have been used to predict protein structures, transcription factor-binding sites, and promoters. In this work, we propose a hybrid model to identify transcription factors (TFs) among prokaryotic and eukaryotic protein sequences, named Deep Regulation (DeepReg) model. Two architectures were used in the DL model: a convolutional neural network (CNN), and a bidirectional long-short-term memory (BiLSTM). DeepReg reached a precision of 0.99, a recall of 0.97, and an F1-score of 0.98. The quality of our predictions, the bias-variance trade-off approach, and the characterization of new TF predictions were evaluated and compared against those produced by DeepTFactor, as well as against experimental data from three model organisms. Predictions based on our DLM tended to exhibit less variance and bias than those from DeepTFactor, thus increasing reliability and decreasing overfitting.
Collapse
Affiliation(s)
- Leonardo Ledesma-Dominguez
- Posgrado en Ciencia en Ingeniería de la Computación, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, 04510, Mexico City, México.
| | - Erik Carbajal-Degante
- Coordinación de Universidad Abierta, Innovación Educativa y Educación a Distancia (CUAIEED), Universidad Nacional Autónoma de México, 04510, Mexico City, México
| | | | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Unidad Académica del Estado de Yucatán, Universidad Nacional Autónoma de México, Mérida, Yucatán, México.
| |
Collapse
|
4
|
Sepúlveda-Rebolledo P, González-Rosales C, Dopson M, Pérez-Rueda E, Holmes DS, Valdés JH. Comparative genomics sheds light on transcription factor-mediated regulation in the extreme acidophilic Acidithiobacillia representatives. Res Microbiol 2024; 175:104135. [PMID: 37678513 DOI: 10.1016/j.resmic.2023.104135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Extreme acidophiles thrive in acidic environments, confront a multitude of challenges, and demonstrate remarkable adaptability in their metabolism to cope with the ever-changing environmental fluctuations, which encompass variations in temperature, pH levels, and the availability of electron acceptors and donors. The survival and proliferation of members within the Acidithiobacillia class rely on the deployment of transcriptional regulatory systems linked to essential physiological traits. The study of these transcriptional regulatory systems provides valuable insights into critical processes, such as energy metabolism and nutrient assimilation, and how they integrate into major genetic-metabolic circuits. In this study, we examined the transcriptional regulatory repertoires and potential interactions of forty-three Acidithiobacillia complete and draft genomes, encompassing nine species. To investigate the function and diversity of Transcription Factors (TFs) and their DNA Binding Sites (DBSs), we conducted a genome-wide comparative analysis, which allowed us to identify these regulatory elements in representatives of Acidithiobacillia. We classified TFs into gene families and compared their occurrence among all representatives, revealing conservation patterns across the class. The results identified conserved regulators for several pathways, including iron and sulfur oxidation, the main pathways for energy acquisition, providing new evidence for viable regulatory interactions and branch-specific conservation in Acidithiobacillia. The identification of TFs and DBSs not only corroborates existing experimental information for selected species, but also introduces novel candidates for experimental validation. Moreover, these promising candidates have the potential for further extension to new representatives within the class.
Collapse
Affiliation(s)
- Pedro Sepúlveda-Rebolledo
- Centro de Genómica y Bioinformática and PhD. Program on Integrative Genomics, Facultad de Ciencias, Universidad Mayor, Santiago (8580745), Chile.
| | - Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago (8580638), Chile; Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Mérida, Yucatán, Mexico.
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago (8580638), Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago (7510156), Chile.
| | - Jorge H Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago (8370146), Chile.
| |
Collapse
|
5
|
Neetu N, Mahto JK, Sharma M, Katiki M, Dhaka P, Roy P, Tomar S, Narayan A, Yernool D, Kumar P. Sulisobenzone is a potent inhibitor of the global transcription factor Cra. J Struct Biol 2023; 215:108034. [PMID: 37805153 DOI: 10.1016/j.jsb.2023.108034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Transcription is carried out by the RNA polymerase and is regulated through a series of interactions with transcription factors. Catabolite activator repressor (Cra), a LacI family transcription factor regulates the virulence gene expression in Enterohaemorrhagic Escherichia coli (EHEC) and thus is a promising drug target for the discovery of antivirulence molecules. Here, we report the crystal structure of the effector molecule binding domain of Cra from E. coli (EcCra) in complex with HEPES molecule. Based on the EcCra-HEPES complex structure, ligand screening was performed that identified sulisobenzone as an potential inhibitor of EcCra. The electrophoretic mobility shift assay (EMSA) and in vitro transcription assay validated the sulisobenzone binding to EcCra. Moreover, the isothermal titration calorimetry (ITC) experiments demonstrated a 40-fold higher binding affinity of sulisobenzone (KD 360 nM) compared to the HEPES molecule. Finally, the sulisobenzone bound EcCra complex crystal structure was determined to elucidate the binding mechanism of sulisobenzone to the effector binding pocket of EcCra. Together, this study suggests that sulisobenzone may be a promising candidate that can be studied and developed as an effective antivirulence agent against EHEC.
Collapse
Affiliation(s)
- Neetu Neetu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Madhusudhanarao Katiki
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Anoop Narayan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Dinesh Yernool
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
6
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. J Biol Chem 2023; 299:105147. [PMID: 37567478 PMCID: PMC10509353 DOI: 10.1016/j.jbc.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
8
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
9
|
Xuyang L, Cristina LM, Laura MA, Xu P. A clade of RHH proteins ubiquitous in Sulfolobales and their viruses regulates cell cycle progression. Nucleic Acids Res 2023; 51:1724-1739. [PMID: 36727447 PMCID: PMC9976892 DOI: 10.1093/nar/gkad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Cell cycle regulation is crucial for all living organisms and is often targeted by viruses to facilitate their own propagation, yet cell cycle progression control is largely underexplored in archaea. In this work, we reveal a cell cycle regulator (aCcr1) carrying a ribbon-helix-helix (RHH) domain and ubiquitous in the Thermoproteota of the order Sulfolobales and their viruses. Overexpression of several aCcr1 members including gp21 of rudivirus SIRV2 and its host homolog SiL_0190 of Saccharolobus islandicus LAL14/1 results in impairment of cell division, evidenced by growth retardation, cell enlargement and an increase in cellular DNA content. Additionally, both gp21 and SiL_0190 can bind to the motif AGTATTA conserved in the promoter of several genes involved in cell division, DNA replication and cellular metabolism thereby repressing or inducing their transcription. Our results suggest that aCcr1 silences cell division and drives progression to the S-phase in Sulfolobales, a function exploited by viruses to facilitate viral propagation.
Collapse
Affiliation(s)
- Li Xuyang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lozano-Madueño Cristina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Martínez-Alvarez Laura
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Peng Xu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
González-Morelo KJ, Galán-Vásquez E, Melis F, Pérez-Rueda E, Garrido D. Structure of co-expression networks of Bifidobacterium species in response to human milk oligosaccharides. Front Mol Biosci 2023; 10:1040721. [PMID: 36776740 PMCID: PMC9908966 DOI: 10.3389/fmolb.2023.1040721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Biological systems respond to environmental perturbations and a large diversity of compounds through gene interactions, and these genetic factors comprise complex networks. Experimental information from transcriptomic studies has allowed the identification of gene networks that contribute to our understanding of microbial adaptations. In this study, we analyzed the gene co-expression networks of three Bifidobacterium species in response to different types of human milk oligosaccharides (HMO) using weighted gene co-expression analysis (WGCNA). RNA-seq data obtained from Geo Datasets were obtained for Bifidobacterium longum subsp. Infantis, Bifidobacterium bifidum and Bifidobacterium longum subsp. Longum. Between 10 and 20 co-expressing modules were obtained for each dataset. HMO-associated genes appeared in the modules with more genes for B. infantis and B. bifidum, in contrast with B. longum. Hub genes were identified in each module, and in general they participated in conserved essential processes. Certain modules were differentially enriched with LacI-like transcription factors, and others with certain metabolic pathways such as the biosynthesis of secondary metabolites. The three Bifidobacterium transcriptomes showed distinct regulation patterns for HMO utilization. HMO-associated genes in B. infantis co-expressed in two modules according to their participation in galactose or N-Acetylglucosamine utilization. Instead, B. bifidum showed a less structured co-expression of genes participating in HMO utilization. Finally, this category of genes in B. longum clustered in a small module, indicating a lack of co-expression with main cell processes and suggesting a recent acquisition. This study highlights distinct co-expression architectures in these bifidobacterial genomes during HMO consumption, and contributes to understanding gene regulation and co-expression in these species of the gut microbiome.
Collapse
Affiliation(s)
- Kevin J. González-Morelo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigación en Matemáticas Aplicadas y en Sistemas. Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, México
| | - Felipe Melis
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Mexico
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Daniel Garrido,
| |
Collapse
|
11
|
Duarte-Velázquez I, de la Mora J, Ramírez-Prado JH, Aguillón-Bárcenas A, Tornero-Gutiérrez F, Cordero-Loreto E, Anaya-Velázquez F, Páramo-Pérez I, Rangel-Serrano Á, Muñoz-Carranza SR, Romero-González OE, Cardoso-Reyes LR, Rodríguez-Ojeda RA, Mora-Montes HM, Vargas-Maya NI, Padilla-Vaca F, Franco B. Escherichia coli transcription factors of unknown function: sequence features and possible evolutionary relationships. PeerJ 2022; 10:e13772. [PMID: 35880217 PMCID: PMC9308461 DOI: 10.7717/peerj.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Organisms need mechanisms to perceive the environment and respond accordingly to environmental changes or the presence of hazards. Transcription factors (TFs) are required for cells to respond to the environment by controlling the expression of genes needed. Escherichia coli has been the model bacterium for many decades, and still, there are features embedded in its genome that remain unstudied. To date, 58 TFs remain poorly characterized, although their binding sites have been experimentally determined. This study showed that these TFs have sequence variation at the third codon position G+C content but maintain the same Codon Adaptation Index (CAI) trend as annotated functional transcription factors. Most of these transcription factors are in areas of the genome where abundant repetitive and mobile elements are present. Sequence divergence points to groups with distinctive sequence signatures but maintaining the same type of DNA binding domain. Finally, the analysis of the promoter sequences of the 58 TFs showed A+T rich regions that agree with the features of horizontally transferred genes. The findings reported here pave the way for future research of these TFs that may uncover their role as spare factors in case of lose-of-function mutations in core TFs and trace back their evolutionary history.
Collapse
Affiliation(s)
- Isabel Duarte-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Javier de la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City, México
| | | | - Alondra Aguillón-Bárcenas
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fátima Tornero-Gutiérrez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Eugenia Cordero-Loreto
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fernando Anaya-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Itzel Páramo-Pérez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Ángeles Rangel-Serrano
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | | | - Luis Rafael Cardoso-Reyes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | - Héctor Manuel Mora-Montes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Naurú Idalia Vargas-Maya
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Felipe Padilla-Vaca
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Bernardo Franco
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
12
|
Romero L, Contreras-Riquelme S, Lira M, Martin AJM, Perez-Rueda E. Homology-based reconstruction of regulatory networks for bacterial and archaeal genomes. Front Microbiol 2022; 13:923105. [PMID: 35928164 PMCID: PMC9344073 DOI: 10.3389/fmicb.2022.923105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Gene regulation is a key process for all microorganisms, as it allows them to adapt to different environmental stimuli. However, despite the relevance of gene expression control, for only a handful of organisms is there related information about genome regulation. In this work, we inferred the gene regulatory networks (GRNs) of bacterial and archaeal genomes by comparisons with six organisms with well-known regulatory interactions. The references we used are: Escherichia coli K-12 MG1655, Bacillus subtilis 168, Mycobacterium tuberculosis, Pseudomonas aeruginosa PAO1, Salmonella enterica subsp. enterica serovar typhimurium LT2, and Staphylococcus aureus N315. To this end, the inferences were achieved in two steps. First, the six model organisms were contrasted in an all-vs-all comparison of known interactions based on Transcription Factor (TF)-Target Gene (TG) orthology relationships and Transcription Unit (TU) assignments. In the second step, we used a guilt-by-association approach to infer the GRNs for 12,230 bacterial and 649 archaeal genomes based on TF-TG orthology relationships of the six bacterial models determined in the first step. Finally, we discuss examples to show the most relevant results obtained from these inferences. A web server with all the predicted GRNs is available at https://regulatorynetworks.unam.mx/ or http://132.247.46.6/.
Collapse
Affiliation(s)
- Luis Romero
- Licenciatura en Ciencias Genomicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | - Sebastian Contreras-Riquelme
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Manuel Lira
- Cómputo Académico, Facultad de Ciencias - UMDI-Sisal, Sede Parque Científico y Tecnológico de Yucatán, Universidad Nacional Autónoma de México, Mérida, Mexico
| | - Alberto J. M. Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
- Alberto J. M. Martin,
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Mexico
- *Correspondence: Ernesto Perez-Rueda,
| |
Collapse
|
13
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
14
|
Martinez-Liu L, Hernandez-Guerrero R, Rivera-Gomez N, Martinez-Nuñez MA, Escobar-Turriza P, Peeters E, Perez-Rueda E. Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms. PLoS One 2021; 16:e0254025. [PMID: 34214112 PMCID: PMC8253408 DOI: 10.1371/journal.pone.0254025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Archaea represent a diverse phylogenetic group that includes free-living, extremophile, mesophile, symbiont, and opportunistic organisms. These prokaryotic organisms share a high significant similarity with the basal transcriptional machinery of Eukarya, and they share regulatory mechanisms with Bacteria, such as operonic organization and DNA-binding transcription factors (TFs). In this work, we identified the repertoire of TFs in 415 archaeal genomes and compared them with their counterparts in bacterial genomes. The comparisons of TFs, at a global level and per family, allowed us to identify similarities and differences between the repertoires of regulatory proteins of bacteria and archaea. For example, 11 of 62 families are more highly abundant in archaea than bacteria, and 13 families are abundant in bacteria but not in archaea and 38 families have similar abundances in the two groups. In addition, we found that archaeal TFs have a lower isoelectric point than bacterial proteins, i.e., they contain more acidic amino acids, and are smaller than bacterial TFs. Our findings suggest a divergence occurred for the regulatory proteins, even though they are common to archaea and bacteria. We consider that this analysis contributes to the comprehension of the structure and functionality of regulatory proteins of archaeal organisms.
Collapse
Affiliation(s)
- Luis Martinez-Liu
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Nancy Rivera-Gomez
- Catedras-CONACyT, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Pedro Escobar-Turriza
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Eveline Peeters
- Research Group of Microbiology, Vrije Universiteit Brussel, Ixelles, Belgium
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- * E-mail:
| |
Collapse
|
15
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
16
|
Wenck BR, Santangelo TJ. Archaeal transcription. Transcription 2020; 11:199-210. [PMID: 33112729 PMCID: PMC7714419 DOI: 10.1080/21541264.2020.1838865] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.
Collapse
Affiliation(s)
- Breanna R. Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|