1
|
Alsayed MM, Ahmed MF, Hashem MA, Maaty AI, El-Kherbetawy MK, Hassan MM, Sallam AA. Tibial Nerve Repair in a Dog Model: Effect of Local and Systemic Administration of Erythropoietin. J Hand Surg Am 2025; 50:615.e1-615.e11. [PMID: 38069949 DOI: 10.1016/j.jhsa.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 05/06/2025]
Abstract
PURPOSE This study aimed to assess the effectiveness of erythropoietin (EPO) as a novel treatment for peripheral nerve injury after surgical repair of an induced tibial nerve injury in dogs. METHODS Mongrel dogs (n = 27) were randomly divided into three equal groups. A complete tibial nerve injury was induced and repaired directly by stay sutures and the local application of 1 mL fibrin glue (control group). In the "systemic" group, 20,000 IU of EPO were given subcutaneously immediately after surgery and on the first and second days after surgery. In the "local" group, EPO was mixed with fibrin glue at 1,000 IU/mL. Lameness score, compound muscle action potential of the tibial nerve, and serum biochemical and histopathological examinations were performed to evaluate the treated dogs over the study period (12 weeks). RESULTS EPO significantly improved the lameness score and compound muscle action potential in both the systemic and local groups. After 12 weeks, systemic and local groups showed earlier improvement in lameness, reaching scores of -1 and 0, respectively, in comparison with the control group, which did not reach a score of -1. The histological study revealed a normal architecture of the nerve bundles within connective tissue. The axons were aligned in a regular pattern, whereas the control group had disrupted and degenerated nerve axons with large gaps in between. CONCLUSIONS EPO has an accelerating healing effect after tibial nerve surgical repair. Local EPO mimics systemic EPO treatment without systemic adverse effects. These findings indicated that EPO has a potential role in tibial nerve recovery and nerve regeneration. CLINICAL RELEVANCE The findings of the present experimental study supported the beneficial effects of systemic and local EPO when combined with peripheral nerve surgical repair, potentially improving functional outcomes and enhancing faster recovery.
Collapse
Affiliation(s)
- Mostafa M Alsayed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud F Ahmed
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Hashem
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed I Maaty
- Department of Rheumatology, Physical Medicine and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Mohsen M Hassan
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Asser A Sallam
- Department of Orthopedic Surgery and Trauma, Faculty of Medicine, Suez University, Suez, Egypt.
| |
Collapse
|
2
|
Allgood JE, Whitney L, Goodwin J, Chong BSH, Brooks A, Pullan J. The Role of Pain Medications in Modulating Peripheral Nerve Injury Recovery. J Clin Pharmacol 2025; 65:411-423. [PMID: 39492597 DOI: 10.1002/jcph.6156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Peripheral nerve injuries (PNIs) are common, costly, and cause significant pain. Effective management of PNIs involves tailoring medications to the injury type as well as understanding the pharmacokinetics/pharmacodynamics to support nerve regeneration and reduce pain. Opioids act on opioid receptors to significantly reduce pain for many patients, but there are significant addiction risks and side effects. In addition, opioids may exacerbate pain sensitivity and affect nerve regeneration. Non-steroidal anti-inflammatory drugs or acetaminophen act on cyclooxygenase enzymes and are commonly used for nerve pain, with 34.7% of people using them for neuropathic pain. While effective for mild pain, they are often combined with opioids, gamma-aminobutyric acid (GABA) analogs, lidocaine, or corticosteroids for more severe pain. Corticosteroids, mimicking adrenal hormones like cortisol, treat PNI-related inflammation and pain. Their pharmacokinetics are complex, often requiring local injections in order to minimize systemic risks while effectively treating PNIs. Lidocaine, a common local anesthetic, blocks ion channels in the central nervous system (CNS) and peripheral nerves, providing strong analgesic and anti-inflammatory effects. If used improperly, lidocaine can cause neuronal toxicity instead of anesthetic effect. GABA acts as an inhibitory neurotransmitter in the CNS and its drug analogs like pregabalin and gabapentin can alleviate neuropathic pain by binding to voltage-gated Ca2+ channels, inhibiting neurotransmitter release. These pain medications are commonly prescribed for PNIs despite a limited guidance on their effects on nerve regeneration. This review will discuss these drug's mechanisms of action, pharmacokinetics/pharmacodynamics, and their clinical application to highlight their effect on the PNI recovery.
Collapse
Affiliation(s)
- JuliAnne E Allgood
- Department of Neuroscience, University of Wyoming, Laramie, WY, USA
- Co-first authorship, Ivins, UT, USA
| | - Logan Whitney
- Department of Chemistry and Physics, Southern Utah University, Cedar City, UT, USA
- Co-first authorship, Ivins, UT, USA
| | - Jeffrey Goodwin
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, USA
| | - Brian S H Chong
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, USA
| | - Amanda Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT, USA
| | - Jessica Pullan
- Department of Chemistry and Physics, Southern Utah University, Cedar City, UT, USA
| |
Collapse
|
3
|
Jablonka-Shariff A, Broberg C, Snyder-Warwick AK. FK506 Enhancement of Neuromuscular Junction Recovery After Nerve Injury Is Macrophage-Dependent. Muscle Nerve 2025; 71:463-473. [PMID: 39780562 DOI: 10.1002/mus.28336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation. Tacrolimus (FK506) treatment speeds functional recovery through unknown mechanisms. This study investigated whether macrophages were required for FK506 neuroenhancing effects. METHODS Wildtype (WT) mice and mice with impaired macrophage recruitment to injury sites (Ccr2 -/- ) were injected subcutaneously with either saline or FK506 for 3 days prior to sciatic nerve transection and immediate repair and then daily for 4 weeks. Functional recovery was assessed by grid walk and muscle force. Morphometric NMJ and macrophage analyses were conducted in extensor digitorum longus muscles. RESULTS FK506-injected WT mice showed increased proportions of fully reinnervated NMJs and terminal Schwann cells/NMJ (p < 0.05), improved recovery of tetanic muscle force (p < 0.05), and improved grid walking (p < 0.05) relative to controls. Ccr2 -/- mice showed no enhancements in recovery; Ccr2 -/- mice treated with FK506 did not differ from controls on any tested metric. We also observed at the NMJ of WT mice increased macrophage numbers with FK506 treatment and increased macrophages expressing FK506 binding protein, FKBP52, after nerve injury. DISCUSSION These results show that macrophages are required for FK506-mediated improvements in NMJ reinnervation and muscle function. These data implicate macrophages in the mechanism underlying FK506-mediated enhancement of motor recovery after nerve injury. Enhanced knowledge of the neuroenhancing mechanism of FK506 may identify new clinically relevant therapeutic targets.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Curtis Broberg
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Zhao L, Jiang C, Yu B, Zhu J, Sun Y, Yi S. Single-cell profiling of cellular changes in the somatic peripheral nerves following nerve injury. Front Pharmacol 2024; 15:1448253. [PMID: 39415832 PMCID: PMC11479879 DOI: 10.3389/fphar.2024.1448253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Injury to the peripheral nervous system disconnects targets to the central nervous system, disrupts signal transmission, and results in functional disability. Although surgical and therapeutic treatments improve nerve regeneration, it is generally hard to achieve fully functional recovery after severe peripheral nerve injury. A better understanding of pathological changes after peripheral nerve injury helps the development of promising treatments for nerve regeneration. Single-cell analyses of the peripheral nervous system under physiological and injury conditions define the diversity of cells in peripheral nerves and reveal cell-specific injury responses. Herein, we review recent findings on the single-cell transcriptome status in the dorsal root ganglia and peripheral nerves following peripheral nerve injury, identify the cell heterogeneity of peripheral nerves, and delineate changes in injured peripheral nerves, especially molecular changes in neurons, glial cells, and immune cells. Cell-cell interactions in peripheral nerves are also characterized based on ligand-receptor pairs from coordinated gene expressions. The understanding of cellular changes following peripheral nerve injury at a single-cell resolution offers a comprehensive and insightful view for the peripheral nerve repair process, provides an important basis for the exploration of the key regulators of neuronal growth and microenvironment reconstruction, and benefits the development of novel therapeutic drugs for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of Orthopedic, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
5
|
Couch B, Hayward D, Baum G, Sakthiyendran NA, Harder J, Hernandez EJ, MacKay B. A systematic review of steroid use in peripheral nerve pathologies and treatment. Front Neurol 2024; 15:1434429. [PMID: 39286807 PMCID: PMC11402678 DOI: 10.3389/fneur.2024.1434429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Background The use of corticosteroids has become a part of the standard of care in various pathologies but their use in peripheral nerve injury treatment is limited. Given corticosteroids' anti-inflammatory properties and their regulatory role in neuronal protein production and myelination, corticosteroids could serve as an adjunct therapy for peripheral nerve injuries. This review aims to systematically investigate the current use of corticosteroid treatment in peripheral nerve pathologies. Methods The systematic search was performed on PubMed, MEDLINE, EMBASE, Scopus, Cochrane, and Web of Science using keywords such as "corticosteroid treatment," "peripheral nerve damage," "peripheral neuropathy," and "complications." The PRISMA guidelines were used to conduct the systematic review and all articles were reviewed by the corresponding author. After the initial search, individual study titles and abstracts were further screened and categorized using an inclusion and exclusion criteria followed by a final full-text review. Results Out of the total 27,922 identified records, 203 studies were included based on the selection criteria. These studies focused on the use and efficacy of steroids across a spectrum of compression and non-compression peripheral neuropathies such as cubital tunnel syndrome and chronic inflammatory demyelinating polyradiculoneuropathy. Various studies noted the promising role of steroids in offering pain relief, nerve block, and nerve regeneration effects. Additionally, safety considerations and potential complications regarding steroid use in peripheral nerve injuries were analyzed. Conclusion While there is currently limited clinical utilization of corticosteroids in peripheral nerve pathologies, the anti-inflammatory and regenerative effects that steroids provide may be a beneficial tool in managing various peripheral neuropathies and their associated pain. Additional clinical trials and investigation into the mechanism of action could improve the reputation of steroid use as peripheral nerve injury treatment.
Collapse
Affiliation(s)
- Brandon Couch
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Dan Hayward
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Gracie Baum
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | | | - Justin Harder
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Evan J Hernandez
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Brendan MacKay
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
6
|
Lam TC, Leung YY. Innovations in Peripheral Nerve Regeneration. Bioengineering (Basel) 2024; 11:444. [PMID: 38790310 PMCID: PMC11118957 DOI: 10.3390/bioengineering11050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The field of peripheral nerve regeneration is a dynamic and rapidly evolving area of research that continues to captivate the attention of neuroscientists worldwide. The quest for effective treatments and therapies to enhance the healing of peripheral nerves has gained significant momentum in recent years, as evidenced by the substantial increase in publications dedicated to this field. This surge in interest reflects the growing recognition of the importance of peripheral nerve recovery and the urgent need to develop innovative strategies to address nerve injuries. In this context, this article aims to contribute to the existing knowledge by providing a comprehensive review that encompasses both biomaterial and clinical perspectives. By exploring the utilization of nerve guidance conduits and pharmacotherapy, this article seeks to shed light on the remarkable advancements made in the field of peripheral nerve regeneration. Nerve guidance conduits, which act as artificial channels to guide regenerating nerves, have shown promising results in facilitating nerve regrowth and functional recovery. Additionally, pharmacotherapy approaches have emerged as potential avenues for promoting nerve regeneration, with various therapeutic agents being investigated for their neuroprotective and regenerative properties. The pursuit of advancing the field of peripheral nerve regeneration necessitates persistent investment in research and development. Continued exploration of innovative treatments, coupled with a deeper understanding of the intricate processes involved in nerve regeneration, holds the promise of unlocking the complete potential of these groundbreaking interventions. By fostering collaboration among scientists, clinicians, and industry partners, we can accelerate progress in this field, bringing us closer to the realization of transformative therapies that restore function and quality of life for individuals affected by peripheral nerve injuries.
Collapse
Affiliation(s)
| | - Yiu Yan Leung
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
7
|
Ghasemi M, Janparvar A, Behnaz F, Taheri F. Evaluation of Analgesia Using Perineural Dexamethasone Compound in Interscalene Brachial Plexus Block After Shoulder Surgery. Anesth Pain Med 2024; 14:e142635. [PMID: 38725917 PMCID: PMC11078235 DOI: 10.5812/aapm-142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 05/12/2024] Open
Abstract
Background The objective of this study was to examine analgesia when using perineural dexamethasone compound in an interscalene brachial plexus block following shoulder surgery. Methods This study was designed as a randomized, double-blind clinical trial. Patients meeting the specified criteria were randomly divided into two groups: The experimental group and the control group, each comprising 30 individuals. Age and gender were matched between the groups. The control group received lidocaine along with 2 cc of 0.5% bupivacaine (20 milligrams) and 2 cc of normal saline; however, the experimental group received lidocaine, along with 2 cc of 0.5% bupivacaine and 2 cc of dexamethasone. Pain levels were assessed using the Visual Analog Scale (VAS), and covariance analysis was applied for data analysis. Results The results demonstrated that pain intensity was notably lower in the experimental (dexamethasone) group than in the control group at both the 12-hour group (P < 0.001) and 24-hour (P < 0.001) postoperative marks. Dexamethasone significantly reduced pain among the patients. Conclusions In conclusion, administering dexamethasone to potential candidates for shoulder surgery could lead to prolonged analgesia for up to 24 hours after the surgery. Consequently, this medication can serve as an efficacious analgesic option for pain management in these patients.
Collapse
Affiliation(s)
- Mahshid Ghasemi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Janparvar
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faranak Behnaz
- Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farinaz Taheri
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Er-Rouassi H, Bakour M, Touzani S, Vilas-Boas M, Falcão S, Vidal C, Lyoussi B. Beneficial Effect of Bee Venom and Its Major Components on Facial Nerve Injury Induced in Mice. Biomolecules 2023; 13:680. [PMID: 37189427 PMCID: PMC10135545 DOI: 10.3390/biom13040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Peripheral nerve injury (PNI) is a health problem that affects many people worldwide. This study is the first to evaluate the potential effect of bee venom (BV) and its major components in a model of PNI in the mouse. For that, the BV used in this study was analyzed using UHPLC. All animals underwent a distal section-suture of facial nerve branches, and they were randomly divided into five groups. Group 1: injured facial nerve branches without any treatment. Group 2: the facial nerve branches were injured, and the normal saline was injected similarly as in the BV-treated group. Group 3: injured facial nerve branches with local injections of BV solution. Group 4: injured facial nerve branches with local injections of a mixture of PLA2 and melittin. Group 5: injured facial nerve branches with local injection of betamethasone. The treatment was performed three times a week for 4 weeks. The animals were submitted to functional analysis (observation of whisker movement and quantification of nasal deviation). The vibrissae muscle re-innervation was evaluated by retrograde labeling of facial motoneurons in all experimental groups. UHPLC data showed 76.90 ± 0.13%, 11.73 ± 0.13%, and 2.01 ± 0.01%, respectively, for melittin, phospholipase A2, and apamin in the studied BV sample. The obtained results showed that BV treatment was more potent than the mixture of PLA2 and melittin or betamethasone in behavioral recovery. The whisker movement occurred faster in BV-treated mice than in the other groups, with a complete disappearance of nasal deviation two weeks after surgery. Morphologically, a normal fluorogold labeling of the facial motoneurons was restored 4 weeks after surgery in the BV-treated group, but no such restoration was ever observed in other groups. Our findings indicate the potential of the use of BV injections to enhance appropriate functional and neuronal outcomes after PNI.
Collapse
Affiliation(s)
- Hafsa Er-Rouassi
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- The Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Soumaya Touzani
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Soraia Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252 Bragança, Portugal
| | - Catherine Vidal
- Centre Borelli, Université de Paris Cité, National Centre for Scientific Research UMR 9010, 75006 Paris, France
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health, and Quality of Life (SNAMOPEQ), Department of Biology, Faculty of Sciences Dhar Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
10
|
Xu W, Wu Y, Lu H, Zhu Y, Ye J, Yang W. Sustained delivery of vascular endothelial growth factor mediated by bioactive methacrylic anhydride hydrogel accelerates peripheral nerve regeneration after crush injury. Neural Regen Res 2022; 17:2064-2071. [PMID: 35142698 PMCID: PMC8848599 DOI: 10.4103/1673-5374.335166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neurotrophic factors, currently administered orally or by intravenous drip or intramuscular injection, are the main method for the treatment of peripheral nerve crush injury. However, the low effective drug concentration arriving at the injury site results in unsatisfactory outcomes. Therefore, there is an urgent need for a treatment method that can increase the effective drug concentration in the injured area. In this study, we first fabricated a gelatin modified by methacrylic anhydride hydrogel and loaded it with vascular endothelial growth factor that allowed the controlled release of the neurotrophic factor. This modified gelatin exhibited good physical and chemical properties, biocompatibility and supported the adhesion and proliferation of RSC96 cells and human umbilical vein endothelial cells. When injected into the epineurium of crushed nerves, the composite hydrogel in the rat sciatic nerve crush injury model promoted nerve regeneration, functional recovery and vascularization. The results showed that the modified gelatin gave sustained delivery of vascular endothelial growth factors and accelerated the repair of crushed peripheral nerves.
Collapse
Affiliation(s)
- Wanlin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yifan Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wenjun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Wu X, Wang B, Ma Q, Zhang Y, Xu J, Zhang Z, Chen G. Mechanism of erythropoietin-induced M2 microglia polarization via Akt / Mtor / P70S6k signaling pathway in the treatment of brain injury in premature mice and its effect on biofilm. Bioengineered 2022; 13:13021-13032. [PMID: 35611764 PMCID: PMC9276024 DOI: 10.1080/21655979.2022.2073000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the mechanism of erythropoietin (EPO) in brain injury in premature mice based on Akt/mTOR/p70S6K signaling pathway. The brain injury model group of premature mice was obtained by intraperitoneal injection of lipopolysaccharide during pregnancy. Normal mice were taken as the control group. The model mice were divided into low-dose EPO (1,000 IU/kg, L-EPO), medium-dose EPO (2,500 IU/kg, M-EPO), and high-dose EPO groups (5,000 IU/kg, H-EPO) by intraperitoneal injection. The levels of malondialdehyde (MDA) and total superoxide dismutase (T-SOD) were detected. TUNEL staining and Western blotting were used to detect the differences in neuronal apoptosis index (AI), microglial polarization marker protein, and Akt/mTOR/p70S6K-related protein expression levels in each group. Compared with the control group, the protein levels of AI, MDA, Bax, and iNOS in the model, L-EPO, and M-EPO groups were significantly increased, while the T-SOD level and Bcl-2, ARG1, p-Akt, p-mTOR, and p-70S6K protein levels were significantly decreased (P < 0.05). Compared with the model group, AI, MAD levels and Bax, iNOS protein expression levels in L-EPO, M-EPO, and H-EPO groups were significantly decreased, while T-SOD level and Bcl-2, ARG1, p-Akt, p-mTOR, and p-70S6K protein levels were significantly increased. The changes were dose-dependent. In summary, EPO can activate microglia transformation from M1 to M2 through Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Xiuling Wu
- Department of Pediatrics, Maternal and Child Health Hospital of Shenzhen Dapeng New District, Shenzhen, Guangdong, China
| | - Bo Wang
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Qiling Ma
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yunfang Zhang
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ji Xu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zhongyuan Zhang
- Department of Pediatrics, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Guangfu Chen
- Department of Pediatric Neurological Rehabilitation, Maternal and Child Health Hospital of Shenzhen Longhua District, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Erythropoietin promotes M2 macrophage phagocytosis of Schwann cells in peripheral nerve injury. Cell Death Dis 2022; 13:245. [PMID: 35296651 PMCID: PMC8927417 DOI: 10.1038/s41419-022-04671-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Following acute sciatic nerve crush injury (SNCI), inflammation and the improper phagocytic clearance of dying Schwann cells (SCs) has effects on remodeling that lead to morbidity and incomplete functional recovery. Therapeutic strategies like the use of erythropoietin (EPO) for peripheral nerve trauma may serve to bring immune cell phagocytotic clearance under control to support debris clearance. We evaluated EPO’s effect on SNCI and found EPO treatment increased myelination and sciatic functional index (SFI) and bolstered anti-apoptosis and phagocytosis of myelin debris via CD206+ macrophages when compared to saline treatment. EPO enhanced M2 phenotype activity, both in bone marrow-derived macrophages (BMMØs) and peritoneal-derived macrophages (PMØs) in vitro, as well as in PMØs in vivo. EPO increased efferocytosis of apoptotic sciatic nerve derived Schwann cells (SNSCs) in both settings as demonstrated using immunofluorescence (IF) and flow cytometry. EPO treatment significantly attenuated pro-inflammatory genes (IL1β, iNOS, and CD68) and augmented anti-inflammatory genes (IL10 and CD163) and the cell-surface marker CD206. EPO also increased anti-apoptotic (Annexin V/7AAD) effects after lipopolysaccharide (LPS) induction in macrophages. Our data demonstrate EPO promotes the M2 phenotype macrophages to ameliorate apoptosis and efferocytosis of dying SCs and myelin debris and improves SN functional recovery following SNCI.
Collapse
|
13
|
Lee JI, Park JH, Kim YR, Gwon K, Hwang HW, Jung G, Lee JY, Sun JY, Park JW, Shin JH, Ok MR. Delivery of nitric oxide-releasing silica nanoparticles for in vivo revascularization and functional recovery after acute peripheral nerve crush injury. Neural Regen Res 2022; 17:2043-2049. [PMID: 35142695 PMCID: PMC8848604 DOI: 10.4103/1673-5374.335160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO) has been shown to promote revascularization and nerve regeneration after peripheral nerve injury. However, in vivo application of NO remains challenging due to the lack of stable carrier materials capable of storing large amounts of NO molecules and releasing them on a clinically meaningful time scale. Recently, a silica nanoparticle system capable of reversible NO storage and release at a controlled and sustained rate was introduced. In this study, NO-releasing silica nanoparticles (NO-SNs) were delivered to the peripheral nerves in rats after acute crush injury, mixed with natural hydrogel, to ensure the effective application of NO to the lesion. Microangiography using a polymer dye and immunohistochemical staining for the detection of CD34 (a marker for revascularization) results showed that NO-releasing silica nanoparticles increased revascularization at the crush site of the sciatic nerve. The sciatic functional index revealed that there was a significant improvement in sciatic nerve function in NO-treated animals. Histological and anatomical analyses showed that the number of myelinated axons in the crushed sciatic nerve and wet muscle weight excised from NO-treated rats were increased. Moreover, muscle function recovery was improved in rats treated with NO-SNs. Taken together, our results suggest that NO delivered to the injured sciatic nerve triggers enhanced revascularization at the lesion in the early phase after crushing injury, thereby promoting axonal regeneration and improving functional recovery.
Collapse
Affiliation(s)
- Jung Il Lee
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yeong-Rim Kim
- Medical Sensor Biomaterial Research Institute, Kwangwoon University, Seoul, Republic of Korea
| | - Kihak Gwon
- Medical Sensor Biomaterial Research Institute, Kwangwoon University, Seoul, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Korea Institute of Science & Technology; Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Gayoung Jung
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, Republic of Korea
| | - Joo-Yup Lee
- Department of Orthopedic Surgery, College of Medicine, Catholic University, Seoul, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Ho Shin
- Medical Sensor Biomaterial Research Institute; Department of Chemistry, Kwangwoon University, Seoul, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, Republic of Korea
| |
Collapse
|
14
|
Yin GN, Shin TY, Ock J, Choi MJ, Limanjaya A, Kwon MH, Liu FY, Hong SS, Kang JH, Gho YS, Suh JK, Ryu JK. Pericyte‑derived extracellular vesicles‑mimetic nanovesicles improves peripheral nerve regeneration in mouse models of sciatic nerve transection. Int J Mol Med 2022; 49:18. [PMID: 34935051 PMCID: PMC8711595 DOI: 10.3892/ijmm.2021.5073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022] Open
Abstract
Pericyte‑derived extracellular vesicle‑mimetic nanovesicles (PC‑NVs) play an important role in the improvement of erectile function after cavernous nerve injury. However, the impact of PC‑NVs on the peripheral nervous system (PNS), such as the sciatic nerve, is unclear. In this study, PC‑NVs were isolated from mouse cavernous pericytes (MCPs). A sciatic nerve transection (SNT) model was established using 8‑week‑old C57BL/6J mice. The sciatic nerve was harvested 5 and 14 days for immunofluorescence and western blot studies. Function studies were evaluated by performing the rotarod test and walking track analysis. The results demonstrated that PC‑NVs could stimulate endothelial cells, increase neuronal cell content, and increase macrophage and Schwann cell presence at the proximal stump rather than the distal stump in the SNT model, thereby improving angiogenesis and nerve regeneration in the early stage of sciatic nerve regeneration. In addition, PC‑NVs also increased the expression of neurotrophic factors (brain‑derived nerve growth factor, neurotrophin‑3 and nerve growth factor) and the activity of the cell survival signaling pathway (PI3K/Akt signaling), and reduced the activity of the JNK signaling pathway. Additionally, after 8 weeks of local application of PC‑NVs in SNT model mice, their motor and sensory functions were significantly improved, as assessed by performing the rotarod test and walking track analysis. In conclusion, the present study showed that the significant improvement of neurovascular regeneration in mice following treatment with PC‑NVs may provide a favorable strategy for promoting motor and sensory regeneration and functional recovery of the PNS.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Tae Young Shin
- Department of Urology, Ewha Woman's University School of Medicine, Seoul 07804, Republic of Korea
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Anita Limanjaya
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Fang-Yuan Liu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
15
|
Souza NM, Gonçalves MF, Ferreira LFR, Bilal M, Iqbal HMN, Soriano RN. Revisiting the Role of Biologically Active Natural and Synthetic Compounds as an Intervention to Treat Injured Nerves. Mol Neurobiol 2021; 58:4980-4998. [PMID: 34228268 DOI: 10.1007/s12035-021-02473-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Traumatic lesions in nerves present high incidence and may culminate in sensorimotor and/or autonomic dysfunctions or a total loss of function, affecting the patient's quality of life. Although the microenvironment favors peripheral nerve regeneration, the regenerative process is not always successful. Some herbs, natural products, and synthetic drugs have been studied as potential pro-regenerative interventions. We reviewed and discussed the most recent articles published over the last ten years in high impact factor journals. Even though most of the articles contemplated in this review were in vitro and animal model studies, those with herbs showed promising results. Most of them presented antioxidant and anti-inflammatory effects. Drugs of several pharmacological classes also showed optimistic outcomes in nerve functional recovery, including clinical trials. The results are hopeful; however, mechanisms of action need to be elucidated, and there is a need for more high-quality clinical studies. The study presents careful compilation of findings of dozens of compounds with consistent pro-regenerative evidence published in respected scientific journals. It may be valuable for health professionals and researchers in the field.
Collapse
Affiliation(s)
- Natália Melo Souza
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35032-620, Brazil
| | - Mateus Figueiredo Gonçalves
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, Aracaju Sergipe, Farolândia, 30049032-490, Brazil
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, Aracaju-Sergipe, Farolândia, 30049032-490, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35010-177, Brazil.
| |
Collapse
|
16
|
Lee DH, You J, Jung JW, Park JW, Lee JI. Comparison between normal and reverse orientation of graft in functional and histomorphological outcomes after autologous nerve grafting: An experimental study in the mouse model. Microsurgery 2021; 41:645-654. [PMID: 34390500 DOI: 10.1002/micr.30795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/18/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Autologous nerve grafting has been considered the gold standard for the treatment of irreparable nerve gaps. However, the choice of effective proximodistal orientation of autografts (normal or reversed) is controversial. Therefore, we compared functional and histological outcomes between normal and reversed orientations of autografts in a mouse sciatic nerve model. MATERIALS AND METHODS Thirty C57BL/6J mice weighing 20-25 g were assigned to the donor, normally oriented autograft, and reverse-oriented autograft groups (n = 10 per group). A 10-mm section of the sciatic nerve was harvested from a donor mouse. Half the harvested nerve was grafted onto an irreparable gap in a recipient mouse using either a normal or reversed orientation. The sciatic functional index (SFI) was measured biweekly for up to 12 weeks postoperatively. Morphological analysis was performed using immunofluorescence staining for neurofilament (NF) and myelin protein zero (P0) in cross-sectional and whole-mount nerve preparations in 12 weeks postoperatively. Additionally, morphological analysis of the tibialis anterior muscle was performed using hematoxylin and eosin staining. NF or P0-expressing axons were counted and cross-sectional area (CSA) and minimum Feret's diameter of myofibers were measured. RESULTS The SFI recovered gradually up to 12 weeks after autografting, but there were no significant differences in the SFI between the normal and reversed orientations. The number of NF-expressing axons in center of graft was significantly higher in the normal orientation than in the reversed orientation (P < .05). However, there were no significant differences in the number and mean intensity of P0-expressing axons between the orientations. The CSA of myofibers was significantly larger in the normal orientation than in the reversed orientation (P < .05). CONCLUSIONS Normally oriented autografts promote axonal regrowth and prevent neurogenic muscular atrophy compared with reverse-oriented autografts. However, despite these positive histomorphometric effects, the proximodistal orientation of the autograft does not affect functional outcomes.
Collapse
Affiliation(s)
- Duk Hee Lee
- Department of Emergency Medicine, Ewha Women's University Mokdong Hospital, Seoul, South Korea
| | - Jooyoung You
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - Ji Won Jung
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Guri, South Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, South Korea
| | - Jung Il Lee
- Department of Orthopedic Surgery, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
17
|
The Role of PI3K/AKT and MAPK Signaling Pathways in Erythropoietin Signalization. Int J Mol Sci 2021; 22:ijms22147682. [PMID: 34299300 PMCID: PMC8307237 DOI: 10.3390/ijms22147682] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein cytokine known for its pleiotropic effects on various types of cells and tissues. EPO and its receptor EPOR trigger signaling cascades JAK2/STAT5, MAPK, and PI3K/AKT that are interconnected and irreplaceable for cell survival. In this article, we describe the role of the MAPK and PI3K/AKT signaling pathways during red blood cell formation as well as in non-hematopoietic tissues and tumor cells. Although the central framework of these pathways is similar for most of cell types, there are some stage-specific, tissue, and cell-lineage differences. We summarize the current state of research in this field, highlight the novel members of EPO-induced PI3K and MAPK signaling, and in this respect also the differences between erythroid and non-erythroid cells.
Collapse
|