1
|
Kato Y, Nitta JH, Perez CAG, Adhitama N, Religia P, Toyoda A, Iwasaki W, Watanabe H. Identification of gene isoforms and their switching events between male and female embryos of the parthenogenetic crustacean Daphnia magna. Sci Rep 2024; 14:9407. [PMID: 38688940 PMCID: PMC11061156 DOI: 10.1038/s41598-024-59774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
The cladoceran crustacean Daphnia exhibits phenotypic plasticity, a phenomenon that leads to diverse phenotypes from one genome. Alternative usage of gene isoforms has been considered a key gene regulation mechanism for controlling different phenotypes. However, to understand the phenotypic plasticity of Daphnia, gene isoforms have not been comprehensively analyzed. Here we identified 25,654 transcripts derived from the 9710 genes expressed during environmental sex determination of Daphnia magna using the long-read RNA-Seq with PacBio Iso-Seq. We found that 14,924 transcripts were previously unidentified and 5713 genes produced two or more isoforms. By a combination of Illumina short-read RNA-Seq, we detected 824 genes that implemented switching of the highest expressed isoform between females and males. Among the 824 genes, we found isoform switching of an ortholog of CREB-regulated transcription coactivator, a major regulator of carbohydrate metabolism in animals, and a correlation of this switching event with the sexually dimorphic expression of carbohydrate metabolic genes. These results suggest that a comprehensive catalog of isoforms may lead to understanding the molecular basis for environmental sex determination of Daphnia. We also infer the applicability of the full-length isoform analyses to the elucidation of phenotypic plasticity in Daphnia.
Collapse
Affiliation(s)
- Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| | - Joel H Nitta
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Pijar Religia
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Zhang P, Yang Y, Xu Y, Cui Z. Analyses of the Dmrt family in a decapod crab, Eriocheir sinensis uncover new facets on the evolution of DM domain genes. Front Physiol 2023; 14:1201846. [PMID: 37304820 PMCID: PMC10252143 DOI: 10.3389/fphys.2023.1201846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DM domain genes are a group of transcription factors that are integral to sexual development and its evolution in metazoans. Their functions and regulatory mechanisms are not well understood in Malacostraca (crabs and crayfish) while these sex regulators have been widely identified in the past decade. In this study, the Dmrt family was investigated in the decapod crab, Eriocheir sinensis. We find that most members of the EsDmrt family begin to enrich around the juvenile 1 stage. In reproductive organs, EsDsx1, EsDsx2, EsiDMY and EsiDmrt1a highly express in the male-specific androgenic gland (AG), while EsDmrt-like, EsDsx-like, EsDmrt11E, and EsiDmrt1b show relatively high expression in testis. Also, we find the highly aberrant expression of EsiDMY and EsiDmrt1a in the chimeric AG, strongly indicating their function in AG development. Moreover, RNA interference of EsDsx1, EsiDMY, and EsiDmrt1a results in a significant decrease in transcription of the Insulin-like androgenic hormone (IAG), respectively. Our findings suggest that Dmrt genes in E. sinensis primarily function in male sexual differentiation, especially in AG development. Besides, this study identifies two unique groups of Dmrt genes in Malacostraca: Dsx and iDmrt1. In Malacostraca Dsx, we uncover a cryptic mutation in the eight zinc motif-specific residues, which were firmly believed to be invariant across the Dmrt family. This mutation sets the Malacostraca Dsx apart from all the other Dmrt genes and implies a different way of transcriptional regulation. Genes from the iDmrt1 group show phylogenetical limitation to the malacostracan species and underwent positive selection, suggesting their highly specialized gene function to this class. Based on these findings, we propose that Dsx and iDmrt1 in Malacostraca have developed unique transcriptional regulation mechanisms to facilitate AG development. We hope that this study would contribute to our understandings of sexual development in Malacostraca and provide new insights into the evolutionary history of the Dmrt family.
Collapse
Affiliation(s)
- Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
3
|
The Sex-Specific Splicing of Doublesex in Brine Shrimp Artemia franciscana. Genes (Basel) 2022; 13:genes13111997. [PMID: 36360234 PMCID: PMC9690683 DOI: 10.3390/genes13111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The understanding of sex determination and differentiation in animals has recently made remarkable strides through the use of advanced research tools. At the gene level, the Mab-3-related transcription factor (Dmrt) gene family, which encodes for the typical DNA-binding doublesex/Mab-3 (DM) domain in their protein, is known for its contribution to sex determination and differentiation in insects. In this study, DNA-binding DM domain screening has identified eight transcripts from Artemia franciscana transcriptomic that encode proteins containing one conserved DNA-binding DM domain. The genome mapping confirmed that these eight transcripts are transcribed from six different loci on the A. franciscana genome assembly. One of those loci, the Af.dsx-4 locus, is closely related to Doublesex, a gene belonging to the Dmrt gene family. This locus could be transcribed into three alternative transcripts, namely Af.dsx4, Af.dsxF and Af.dsxM. While Af.dsx4 and Af.dsxF could putatively be translated to form an identical Af.dsxF protein of 186 aa long, Af.dsxM translates for an Af.dsxM protein of 289 aa long but shares a DNA-binding DM domain. Interestingly, Af.dsxF and Af.dsxM are confirmed as sex-specific transcripts, Af.dsxF is only present in females, and Af.dsxM is only present in male individuals. The results suggest that the sex-specific splicing mechanism of the doublesex described in insects is also present in A. franciscana. Af.dxs-4 locus can be used in further studies to clarify the sex determination pathways in A. fracnciscana.
Collapse
|
4
|
Ebert D. Daphnia as a versatile model system in ecology and evolution. EvoDevo 2022; 13:16. [PMID: 35941607 PMCID: PMC9360664 DOI: 10.1186/s13227-022-00199-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Water fleas of the genus Daphnia have been a model system for hundreds of years and is among the best studied ecological model organisms to date. Daphnia are planktonic crustaceans with a cyclic parthenogenetic life-cycle. They have a nearly worldwide distribution, inhabiting standing fresh- and brackish water bodies, from small temporary pools to large lakes. Their predominantly asexual reproduction allows for the study of phenotypes excluding genetic variation, enabling us to separate genetic from non-genetic effects. Daphnia are often used in studies related to ecotoxicology, predator-induced defence, host–parasite interactions, phenotypic plasticity and, increasingly, in evolutionary genomics. The most commonly studied species are Daphnia magna and D. pulex, for which a rapidly increasing number of genetic and genomic tools are available. Here, I review current research topics, where the Daphnia model system plays a critical role.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
5
|
Kato Y, Watanabe H. Regulation of Doublesex1 Expression for Environmental Sex Determination in the Cladoceran Crustacean Daphnia. Front Cell Dev Biol 2022; 10:881255. [PMID: 35493103 PMCID: PMC9043111 DOI: 10.3389/fcell.2022.881255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cladoceran crustacean Daphnia produces only females by parthenogenesis in a healthy population. However, in response to environmental declines such as crowding and lack of foods, it produces eggs destined to become males that are genetically identical to females. During the development of the sexually committed eggs, DM domain-containing transcription factor Doublesex1 (Dsx1) orchestrates male trait formation globally both in somatic and gonadal tissues. Recent studies have revealed that Dsx1 expression is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels to avoid sexual ambiguity. In this review, together with basic information on Dsx1 structure and expression, we introduce the multi-layered Dsx1 regulation and discuss how each regulation is interconnected for controlling male development in environmental sex-determining Daphnia.
Collapse
|
6
|
Perez CAG, Adachi S, Nong QD, Adhitama N, Matsuura T, Natsume T, Wada T, Kato Y, Watanabe H. Sense-overlapping lncRNA as a decoy of translational repressor protein for dimorphic gene expression. PLoS Genet 2021; 17:e1009683. [PMID: 34319983 PMCID: PMC8351930 DOI: 10.1371/journal.pgen.1009683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/09/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are vastly transcribed and extensively studied but lncRNAs overlapping with the sense orientation of mRNA have been poorly studied. We analyzed the lncRNA DAPALR overlapping with the 5´ UTR of the Doublesex1 (Dsx1), the male determining gene in Daphnia magna. By affinity purification, we identified an RNA binding protein, Shep as a DAPALR binding protein. Shep also binds to Dsx1 5´ UTR by recognizing the overlapping sequence and suppresses translation of the mRNA. In vitro and in vivo analyses indicated that DAPALR increased Dsx1 translation efficiency by sequestration of Shep. This regulation was impaired when the Shep binding site in DAPALR was deleted. These results suggest that Shep suppresses the unintentional translation of Dsx1 by setting a threshold; and when the sense lncRNA DAPALR is expressed, DAPALR cancels the suppression caused by Shep. This mechanism may be important to show dimorphic gene expressions such as sex determination and it may account for the binary expression in various developmental processes. Long noncoding RNAs are vastly transcribed throughout the genome. Among them, RNAs overlapping the protein-coding RNA in sense orientation have been poorly studied because of the difficulty in differentiating their sequences from their overlapping coding RNAs although this class of RNAs has been reported to comprise the majority of the long noncoding RNAs. In the crustacean Daphnia magna, a long noncoding RNA, called DAPALR, is transcribed from the male determining gene, Doublesex1, and overlaps with the Doublesex1 5´ UTR. DAPALR activates Doublesex1 but this regulatory mechanism remains unknown. We found the RNA binding protein Shep bound to the Doublesex1 5´ UTR. In vitro and in vivo experiments indicated that Shep suppresses translation of the mRNA and DAPALR increases Doublesex1 translation efficiency by sequestration of Shep. Since male-specific expression of Doublesex1 is also regulated at the transcriptional level, we propose that Shep cancels the unexpected expression of Doublesex1 and maintains the feminized state for sexual dimorphism but DAPALR suppresses this repression by sequestration of Shep. We infer that this mechanism is not only for binary sex regulation but could function in the binary regulation of other genes in various biological processes.
Collapse
Affiliation(s)
| | - Shungo Adachi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Quang Dang Nong
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Toru Natsume
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tadashi Wada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- * E-mail: (HW); (YK)
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- * E-mail: (HW); (YK)
| |
Collapse
|
7
|
Chen L, Gómez R, Weiss LC. Distinct Gene Expression Patterns of Two Heat Shock Protein 70 Members During Development, Diapause, and Temperature Stress in the Freshwater Crustacean Daphnia magna. Front Cell Dev Biol 2021; 9:692517. [PMID: 34277636 PMCID: PMC8281232 DOI: 10.3389/fcell.2021.692517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Dormancy is a lifecycle delay that allows organisms to escape suboptimal environmental conditions. As a genetically programmed type of dormancy, diapause is usually accompanied by metabolic depression and enhanced tolerance toward adverse environmental factors. However, the drivers and regulators that steer an organism’s development into a state of suspended animation to survive environmental stress have not been fully uncovered. Heat shock proteins 70 (HSP70s), which are often produced in response to various types of stress, have been suggested to play a role in diapause. Considering the diversity of the Hsp70 family, different family members may have different functions during diapause. In the present study, we demonstrate the expression of two hsp70 genes (A and B together with protein localization of B) throughout continuous and diapause interrupted development of Daphnia magna. Before and after diapause, the expression of Dmhsp70-A is low. Only shortly before diapause and during diapause, Dmhsp70-A is significantly upregulated and may therefore be involved in diapause preparation and maintenance. In contrast, Dmhsp70-B is expressed only in developing embryos but not in diapausing embryos. During continuous development, the protein of this Hsp70 family member is localized in the cytosol. When we expose both embryo types to heat stress, expression of both hsp70 genes increases only in developing embryos, and the protein of family member B is translocated to the nucleus. In this stress formation, this protein provides effective protection of nucleoplasmic DNA. As we also see this localization in diapausing embryos, it seems that Daphnia embryo types share a common subcellular strategy when facing dormancy or heat shock, i.e., they protect their DNA by HSP70B nuclear translocation. Our study underlines the distinctive roles that different Hsp70 family members play throughout continuous and diapause interrupted development.
Collapse
Affiliation(s)
- Luxi Chen
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|