1
|
Zhang Y, Pan J, Zeng D, Wang Y, Hu C, Chen M. Transcriptomics of Various Diseases Reveals the Core Role of Immune System Pathways in Retinal Damage Repair and Nerve Regeneration. Mol Neurobiol 2025:10.1007/s12035-025-04929-y. [PMID: 40244560 DOI: 10.1007/s12035-025-04929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Retinal ganglion cells (RGCs) are the only neuronal bridges connecting retinal inputs to the brain's visual processing centers, enabling visual perception. The axon of RGCs forms the optic nerve, which transmits visual information to the visual cortex. Damage to RGCs and their axons results in irreversible visual impairment. Acute retinal damage is commonly induced by conditions such as optic nerve compression, glaucoma, and optic neuritis, for which effective clinical treatments are currently unavailable. Therefore, understanding the response of RGCs and their axons to injury is crucial for the development of potential treatments. This study utilizes multiple models including optic nerve crush (ONC), acute intraocular pressure (IOP) elevation, and local lipopolysaccharide (LPS) injection into the optic nerve to mimic eye diseases. Three days post-surgery, mice underwent retinal isolation followed by bulk-RNA sequencing to analyze differential gene expression among models. Using thresholds of |Log2 fold change (FC)|> 2 and p-value < 0.05, the significant gene expression changes observed in each model were as follows: ONC (upregulated, 456; downregulated, 84), IOP (upregulated, 1946; downregulated, 655), and LPS (upregulated, 219; downregulated, 94). Gene ontology (GO) analysis of the upregulated genes unexpectedly revealed that immune system pathways were the primary shared targets across all three models. In contrast, the downregulated genes exhibited model-specific enrichment: synaptic components and functions in IOP, neurogenesis and neuronal development in ONC, and inflammation and antioxidant in LPS. These findings were further confirmed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. This suggests that managing immune activation is essential for treating acute retinal injury, and therapeutic strategies should address model-specific targets as well. Notably, 39 genes intersected across the models, and the protein-protein interaction (PPI) network identified Ccl5 as a key hub gene, underscoring its critical role in the pathophysiology of all three diseases.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junjia Pan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Deqin Zeng
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yifan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
2
|
Manickam V, Maity S, Murali SV, Gawande DY, Stothert AR, Batalkina L, Cardona AE, Kaur T. Local delivery of soluble fractalkine (CX3CL1) peptide restores ribbon synapses after noise-induced cochlear synaptopathy. Front Cell Neurosci 2024; 18:1486740. [PMID: 39539341 PMCID: PMC11557324 DOI: 10.3389/fncel.2024.1486740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Cochlear ribbon synapses between sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are vulnerable to rapid and primary damage and/or loss due to noise overexposure. Such damaged ribbon synapses can repair spontaneously in mouse and guinea pig. However, the mechanisms for synaptic repair are unclear. Previously, we have demonstrated a critical role for the fractalkine signaling axis (CX3CL1-CX3CR1) in synaptic repair, wherein noise-damaged ribbon synapses are spontaneously repaired in the presence of fractalkine receptor (CX3CR1) expressed by cochlear macrophages. Here, we examined whether local administration of chemokine fractalkine ligand (CX3CL1 or FKN) in the form of a peptide is effective in restoring synapses and hearing loss after noise-induced cochlear synaptopathy (NICS). Specifically, the efficacy of different isoforms of FKN was evaluated for restoration of loss of IHC ribbon synapses and hearing after NICS. A single transtympanic injection of soluble isoform of FKN (sFKN) peptide at 1 day after synaptopathic noise trauma for 2 hours at 93 decibel sound pressure level led to significant recovery of auditory brainstem response (ABR) thresholds, ABR peak I amplitudes and ribbon synapses in FKN knockout mice when compared to mice injected with membrane-bound FKN peptide (mFKN). Likewise, local treatment with sFKN peptide in FKN wild type mice restored synaptopathic noise-damaged ribbon synapses and ABR peak I amplitudes. Mechanistically, FKN regulates macrophage numbers in the damaged cochlea and in the absence of macrophages, sFKN failed to restore loss of synapses and hearing after NICS. Furthermore, sFKN treatment attenuated cochlear inflammation after NICS without altering the expression of CX3CR1. Finally, injected sFKN peptide was detectable inside the cochlea for 24 h localized to the basilar membrane and spiral lamina near the sensory epithelium. These data provide a proof-of-principle that local delivery of an immune factor, sFKN is effective in restoring ribbon synapses and hearing loss after NICS in a macrophage-dependent manner and highlights the potential of sFKN as an immunotherapy for cochlear synaptopathy due to noise.
Collapse
Affiliation(s)
| | - Sibaprasad Maity
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Sree Varshini Murali
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Dinesh Y. Gawande
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Andrew R. Stothert
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Lyudamila Batalkina
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Astrid E. Cardona
- Department of Molecular Microbiology and Immunology, University of Texas, San Antonio, TX, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
- Department of Otolaryngology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
4
|
Lu ZJ, Ye JG, Wang DL, Li MK, Zhang QK, Liu Z, Huang YJ, Pan CN, Lin YH, Shi ZX, Zheng YF. Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mouse Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2023; 64:30. [PMID: 36943152 PMCID: PMC10043503 DOI: 10.1167/iovs.64.3.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Purpose Corneal epithelial homeostasis is maintained by coordinated gene expression across distinct cell populations, but the gene regulatory programs underlying this cellular diversity remain to be characterized. Here we applied single-cell multi-omics analysis to delineate the gene regulatory profile of mouse corneal epithelial cells under normal homeostasis. Methods Single cells isolated from the cornea epithelium (with marginal conjunctiva) of adult mice were subjected to scRNA-seq and scATAC-seq using the 10×Genomics platform. Cell types were clustered by the graph-based visualization method uniform manifold approximation and projection and unbiased computational informatics analysis. The scRNA-seq and scATAC-seq datasets were integrated following the integration pipeline described in ArchR and Seurat. Results We characterized diverse corneal epithelial cell types based on gene expression signatures and chromatin accessibility. We found that cell type-specific accessibility regions were mainly located at distal regions, suggesting essential roles of distal regulatory elements in determining corneal epithelial cell diversity. Trajectory analyses revealed a continuum of cell state transition and higher coordination between transcription factor (TF) motif accessibility and gene expression during corneal epithelial cell differentiation. By integrating transcriptomic and chromatin accessibility analysis, we identified cell type-specific and shared gene regulation programs. We also uncovered critical TFs driving corneal epithelial cell differentiation, such as nuclear factor I (NFI) family members, Rarg, Elf3. We found that nuclear factor-κB (NF-κB) family members were positive TFs in limbal cells and some superficial cells, but they were involved in regulating distinct biological processes. Conclusions Our study presents a comprehensive gene regulatory landscape of mouse cornea epithelial cells, and provides valuable foundations for future investigation of corneal epithelial homeostasis in the context of cornea pathologies and regenerative medicine.
Collapse
Affiliation(s)
- Zhao-Jing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, China
| | - Jin-Guo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dong-Liang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Meng-Ke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qi-Kai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yan-Jing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Cai-Neng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu-Heng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhuo-Xing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying-Feng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, China
| |
Collapse
|
7
|
Wang Y, Xiao F, Zhao Y, Mao CX, Yu LL, Wang LY, Xiao Q, Liu R, Li X, McLeod HL, Hu BW, Huang YL, Lv QL, Xie XX, Huang WH, Zhang W, Guo CX, Li JG, Yin JY. A two-stage genome-wide association study to identify novel genetic loci associated with acute radiotherapy toxicity in nasopharyngeal carcinoma. Mol Cancer 2022; 21:169. [PMID: 35999636 PMCID: PMC9400233 DOI: 10.1186/s12943-022-01631-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. Methods We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. Results Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10− 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). Conclusions Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. Trial registration Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2). Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01631-8.
Collapse
Affiliation(s)
- Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Fan Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Yi Zhao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.,Department of General Practice, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P.R. China
| | - Chen-Xue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lu-Lu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.,Geriatric Oncology Consortium, Tampa, FL, 33612, USA.,USF Taneja College of Pharmacy, Tampa, FL, 33612, USA
| | - Bi-Wen Hu
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, P. R. China
| | - Yu-Ling Huang
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China
| | - Qiao-Li Lv
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China.,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China
| | - Xiao-Xue Xie
- Departent of Radiotherapy, Hunan Provincial Tumor Hospital and Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, P.R. China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, P. R. China.
| | - Jin-Gao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, P.R. China. .,National Health Commission (NHC) Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, 330029, P.R. China.
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P. R. China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, P. R. China.
| |
Collapse
|