1
|
Subramanian DN, Zethoven M, Pishas KI, Marinović ER, McInerny S, Rowley SM, Allan PE, Devereux L, Cheasley D, James PA, Campbell IG. Assessment of candidate high-grade serous ovarian carcinoma predisposition genes through integrated germline and tumour sequencing. NPJ Genom Med 2025; 10:1. [PMID: 39794353 PMCID: PMC11724014 DOI: 10.1038/s41525-024-00447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) has a significant hereditary component, only half of which is explained. Previously, we performed germline exome sequencing on BRCA1 and BRCA2-negative HGSOC patients, revealing three proposed and 43 novel candidate genes enriched with rare loss-of-function variants. For validation, we undertook case-control analyses using genomic data from disease-free controls. This confirms enrichment for nearly all previously identified genes. Additionally, one-hundred-and-eleven HGSOC tumours from variant carriers were sequenced alongside other complementary studies, seeking evidence of biallelic inactivation as supportive evidence. PALB2 and ATM validate as HGSOC predisposition genes, with 6/8 germline carrier tumours exhibiting biallelic inactivation accompanied by characteristic mutational signatures. Among candidate genes, only LLGL2 consistently shows biallelic inactivation and protein expression loss, supporting it as a novel HGSOC susceptibility gene. The remaining candidate genes fail to validate. Integrating case-control analyses with tumour sequencing is thus crucial for accurate gene discovery in familial cancer studies.
Collapse
Affiliation(s)
- Deepak N Subramanian
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Maia Zethoven
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kathleen I Pishas
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Evanny R Marinović
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Simone M Rowley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Prue E Allan
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Lifepool Cohort, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dane Cheasley
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Dikoglu E, Pareja F. Molecular Basis of Breast Tumor Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:237-257. [PMID: 39821029 DOI: 10.1007/978-3-031-70875-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer (BC) is a profoundly heterogenous disease, with diverse molecular, histological, and clinical variations. The intricate molecular landscape of BC is evident even at early stages, illustrated by the complexity of the evolution from precursor lesions to invasive carcinoma. The key for therapeutic decision-making is the dynamic assessment of BC receptor status and clinical subtyping. Hereditary BC adds an additional layer of complexity to the disease, given that different cancer susceptibility genes contribute to distinct phenotypes and genomic features. Furthermore, the various BC subtypes display distinct metabolic demands and immune microenvironments. Finally, genotypic-phenotypic correlations in special histologic subtypes of BC inform diagnostic and therapeutic approaches, highlighting the significance of thoroughly comprehending BC heterogeneity.
Collapse
Affiliation(s)
- Esra Dikoglu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Wagutu G, Gitau J, Mwangi K, Murithi M, Melly E, Harris AR, Sayed S, Ambs S, Makokha F. Whole exome-seq and RNA-seq data reveal unique neoantigen profiles in Kenyan breast cancer patients. Front Oncol 2024; 14:1444327. [PMID: 39723380 PMCID: PMC11668681 DOI: 10.3389/fonc.2024.1444327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background The immune response against tumors relies on distinguishing between self and non-self, the basis of cancer immunotherapy. Neoantigens from somatic mutations are central to many immunotherapeutic strategies and understanding their landscape in breast cancer is crucial for targeted interventions. We aimed to profile neoantigens in Kenyan breast cancer patients using genomic DNA and total RNA from paired tumor and adjacent non-cancerous tissue samples of 23 patients. Methods We sequenced the genome-wide exome (WES) and RNA, from which somatic mutations were identified and their expression quantified, respectively. Neoantigen prediction focused on human leukocyte antigens (HLA) crucial to cancer, HLA type I. HLA alleles were predicted from WES data covering the adjacent non-cancerous tissue samples, identifying four alleles that were present in at least 50% of the patients. Neoantigens were deemed potentially immunogenic if their predicted median IC50 (half-maximal inhibitory concentration) binding scores were ≤500nM and were expressed [transcripts per million (TPM) >1] in tumor samples. Results An average of 1465 neoantigens covering 10260 genes had ≤500nM median IC50 binding score and >1 TPM in the 23 patients and their presence significantly correlated with the somatic mutations (R 2 = 0.570, P=0.001). Assessing 58 genes reported in the catalog of somatic mutations in cancer (COSMIC, v99) to be commonly mutated in breast cancer, 44 (76%) produced >2 neoantigens among the 23 patients, with a mean of 10.5 ranging from 2 to 93. For the 44 genes, a total of 477 putative neoantigens were identified, predominantly derived from missense mutations (88%), indels (6%), and frameshift mutations (6%). Notably, 78% of the putative breast cancer neoantigens were patient-specific. HLA-C*06:01 allele was associated with the majority of neoantigens (194), followed by HLA-A*30:01 (131), HLA-A*02:01 (103), and HLA-B*58:01 (49). Among the genes of interest that produced putative neoantigens were MUC17, TTN, MUC16, AKAP9, NEB, RP1L1, CDH23, PCDHB10, BRCA2, TP53, TG, and RB1. Conclusions The unique neoantigen profiles in our patient group highlight the potential of immunotherapy in personalized breast cancer treatment as well as potential biomarkers for prognosis. The unique mutations producing these neoantigens, compared to other populations, provide an opportunity for validation in a much larger sample cohort.
Collapse
Affiliation(s)
- Godfrey Wagutu
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - John Gitau
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- African Institute for Mathematical Science, Kigali, Rwanda
- Center for Epidemiological Modeling and Analysis, Nairobi, Kenya
| | - Kennedy Mwangi
- International Livestock Research Institute, Nairobi, Kenya
| | - Mary Murithi
- Department of Pre-Clinical, Kabarak University, Nakuru, Kenya
| | | | - Alexandra R. Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, United States
| | | | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, United States
| | - Francis Makokha
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| |
Collapse
|
4
|
Li CMC, Cordes A, Oliphant MUJ, Quinn SA, Thomas M, Selfors LM, Silvestri F, Girnius N, Rinaldi G, Zoeller JJ, Shapiro H, Tsiobikas C, Gupta KP, Pathania S, Regev A, Kadoch C, Muthuswamy SK, Brugge JS. Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer. Nat Genet 2024; 56:2763-2775. [PMID: 39528827 DOI: 10.1038/s41588-024-01958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Germline BRCA1 mutation carriers face a high breast cancer risk; however, the underlying mechanisms for this risk are not completely understood. Using a new genetically engineered mouse model of germline Brca1 heterozygosity, we demonstrate that early tumor onset in a Brca1 heterozygous background cannot be fully explained by the conventional 'two-hit' hypothesis, suggesting the existence of inherent tumor-promoting alterations in the Brca1 heterozygous state. Single-cell RNA sequencing and assay for transposase-accessible chromatin with sequencing analyses uncover a unique set of differentially accessible chromatin regions in ostensibly normal Brca1 heterozygous mammary epithelial cells, distinct from wild-type cells and partially mimicking the chromatin and RNA-level changes in tumor cells. Transcription factor analyses identify loss of ELF5 and gain of AP-1 sites in these epigenetically primed regions; in vivo experiments further implicate AP-1 and Wnt10a as strong promoters of Brca1-related breast cancer. These findings reveal a previously unappreciated epigenetic effect of Brca1 haploinsufficiency in accelerating tumorigenesis, advancing our mechanistic understanding and informing potential therapeutic strategies.
Collapse
Affiliation(s)
| | - Alyssa Cordes
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - S Aidan Quinn
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mayura Thomas
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jason J Zoeller
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hana Shapiro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Kushali P Gupta
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shailja Pathania
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Senthil K Muthuswamy
- Cancer Research Institute, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Simionato D, Collesei A, Miglietta F, Vandin F. ALLSTAR: Inference of ReliAble CausaL RuLes between Somatic MuTAtions and CanceR Phenotypes. Bioinformatics 2024; 40:btae449. [PMID: 39037955 PMCID: PMC11520414 DOI: 10.1093/bioinformatics/btae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 04/11/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024] Open
Abstract
MOTIVATION Recent advances in DNA sequencing technologies have allowed the detailed characterization of genomes in large cohorts of tumors, highlighting their extreme heterogeneity, with no two tumors sharing the same complement of somatic mutations. Such heterogeneity hinders our ability to identify somatic mutations important for the disease, including mutations that determine clinically relevant phenotypes (e.g., cancer subtypes). Several tools have been developed to identify somatic mutations related to cancer phenotypes. However, such tools identify correlations between somatic mutations and cancer phenotypes, with no guarantee of highlighting causal relations. RESULTS We describe ALLSTAR, a novel tool to infer reliable causal relations between somatic mutations and cancer phenotypes. ALLSTAR identifies reliable causal rules highlighting combinations of somatic mutations with the highest impact in terms of average effect on the phenotype. While we prove that the underlying computational problem is NP-hard, we develop a branch-and-bound approach that employs protein-protein interaction networks and novel bounds for pruning the search space, while properly correcting for multiple hypothesis testing. Our extensive experimental evaluation on synthetic data shows that our tool is able to identify reliable causal relations in large cancer cohorts. Moreover, the reliable causal rules identified by our tool in cancer data show that our approach identifies several somatic mutations known to be relevant for cancer phenotypes as well as novel biologically meaningful relations. AVAILABILITY AND IMPLEMENTATION Code, data, and scripts to reproduce the experiments available at https://github.com/VandinLab/ALLSTAR. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Dario Simionato
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo 6b, Padua, 35131, Italy
| | - Antonio Collesei
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, 35128, Italy
- Bioinformatics, Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, 35128, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, 35128, Italy
- Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, 35128, Italy
| | - Fabio Vandin
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo 6b, Padua, 35131, Italy
| |
Collapse
|
6
|
Qu Y, Qin S, Yang Z, Li Z, Liang Q, Long T, Wang W, Zeng D, Zhao Q, Dai Z, Ni Q, Zhao F, Kim W, Hou J. Targeting the DNA repair pathway for breast cancer therapy: Beyond the molecular subtypes. Biomed Pharmacother 2023; 169:115877. [PMID: 37951025 DOI: 10.1016/j.biopha.2023.115877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
DNA repair is a vital mechanism in cells that protects against DNA damage caused by internal and external factors. It involves a network of signaling pathways that monitor and transmit damage signals, activating various cellular activities to repair DNA damage and maintain genomic integrity. Dysfunctions in this repair pathway are strongly associated with the development and progression of cancer. However, they also present an opportunity for targeted therapy in breast cancer. Extensive research has focused on developing inhibitors that play a crucial role in the signaling pathway of DNA repair, particularly due to the remarkable success of PARP1 inhibitors (PARPis) in treating breast cancer patients with BRCA1/2 mutations. In this review, we summarize the current research progress and clinical implementation of BRCA and BRCAness in targeted treatments for the DNA repair pathway. Additionally, we present advancements in diverse inhibitors of DNA repair, both as individual and combined approaches, for treating breast cancer. We also discuss the clinical application of DNA repair-targeted therapy for breast cancer, including the rationale, indications, and summarized clinical data for patients with different breast cancer subtypes. We assess their influence on cancer progression, survival rates, and major adverse reactions. Last, we anticipate forthcoming advancements in targeted therapy for cancer treatment and emphasize prospective areas of development.
Collapse
Affiliation(s)
- Yuting Qu
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, Guizhou Province, 563006, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151 Chungcheongnam-do, Republic of Korea
| | - Zhihui Yang
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, Guizhou Province, 563006, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Zhuolin Li
- GuiZhou University Medical College, Guiyang, Guizhou Province 550025, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Qinhao Liang
- Zunyi Medical University, No.6 Xuefu West Road, Zunyi, Guizhou Province, 563006, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Ting Long
- Guizhou Medical University, NO.9 Beijing Road, Guiyang, Guizhou Province 550004, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Weiyun Wang
- Guizhou University of Traditional Chinese Medicine, NO.50 Shi Dong Road, Guiyang, Guizhou Province 550002, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Dan Zeng
- Guizhou Medical University, NO.9 Beijing Road, Guiyang, Guizhou Province 550004, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Qing Zhao
- Guizhou Medical University, NO.9 Beijing Road, Guiyang, Guizhou Province 550004, China; Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Zehua Dai
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Qing Ni
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, 31151 Chungcheongnam-do, Republic of Korea.
| | - Jing Hou
- Department of Breast Surgery, Guizhou Provincial People's Hospital, NO.83 Zhongshan East Road, Guiyang, Guizhou Province 550002, China.
| |
Collapse
|
7
|
Oropeza E, Seker S, Carrel S, Mazumder A, Lozano D, Jimenez A, VandenHeuvel SN, Noltensmeyer DA, Punturi NB, Lei JT, Lim B, Waltz SE, Raghavan SA, Bainbridge MN, Haricharan S. Molecular portraits of cell cycle checkpoint kinases in cancer evolution, progression, and treatment responsiveness. SCIENCE ADVANCES 2023; 9:eadf2860. [PMID: 37390209 PMCID: PMC10313178 DOI: 10.1126/sciadv.adf2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Cell cycle dysregulation is prerequisite for cancer formation. However, it is unknown whether the mode of dysregulation affects disease characteristics. Here, we conduct comprehensive analyses of cell cycle checkpoint dysregulation using patient data and experimental investigations. We find that ATM mutation predisposes the diagnosis of primary estrogen receptor (ER)+/human epidermal growth factor (HER)2- cancer in older women. Conversely, CHK2 dysregulation induces formation of metastatic, premenopausal ER+/HER2- breast cancer (P = 0.001) that is treatment-resistant (HR = 6.15, P = 0.01). Lastly, while mutations in ATR alone are rare, ATR/TP53 co-mutation is 12-fold enriched over expected in ER+/HER2- disease (P = 0.002) and associates with metastatic progression (HR = 2.01, P = 0.006). Concordantly, ATR dysregulation induces metastatic phenotypes in TP53 mutant, not wild-type, cells. Overall, we identify mode of cell cycle dysregulation as a distinct event that determines subtype, metastatic potential, and treatment responsiveness, providing rationale for reconsidering diagnostic classification through the lens of the mode of cell cycle dysregulation..
Collapse
Affiliation(s)
- Elena Oropeza
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sinem Seker
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sabrina Carrel
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aloran Mazumder
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Daniel Lozano
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Athena Jimenez
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | | - Nindo B. Punturi
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jonathan T. Lei
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Lester and Sue Smith Breast Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Oncology/Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Research Service, Cincinnati Veteran's Affairs Medical Center, 3200 Vine St., Cincinnati, OH, USA
| | | | | | - Svasti Haricharan
- Aging and Cancer Immunology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
8
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
9
|
The BRCAness Landscape of Cancer. Cells 2022; 11:cells11233877. [PMID: 36497135 PMCID: PMC9738094 DOI: 10.3390/cells11233877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
BRCAness refers to the damaged homologous recombination (HR) function due to the defects in HR-involved non-BRCA1/2 genes. BRCAness is the important marker for the use of synthetic lethal-based PARP inhibitor therapy in breast and ovarian cancer treatment. The success provides an opportunity of applying PARP inhibitor therapy to treat other cancer types with BRCAness features. However, systematic knowledge is lack for BRCAness in different cancer types beyond breast and ovarian cancer. We performed a comprehensive characterization for 40 BRCAness-related genes in 33 cancer types with over 10,000 cancer cases, including pathogenic variation, homozygotic deletion, promoter hypermethylation, gene expression, and clinical correlation of BRCAness in each cancer type. Using BRCA1/BRCA2 mutated breast and ovarian cancer as the control, we observed that BRCAness is widely present in multiple cancer types. Based on the sum of the BRCAneass features in each cancer type, we identified the following 21 cancer types as the potential targets for PARPi therapy: adrenocortical carcinoma, bladder urothelial carcinoma, brain lower grade glioma, colon adenocarcinoma, esophageal carcinoma, head and neck squamous carcinoma, kidney chromophobe, kidney renal clear cell carcinoma, kidney renal papillary cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, lung squamous cell carcinoma, mesothelioma, rectum adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, sarcoma, skin cutaneous melanoma, stomach adenocarcinoma, uterine carcinosarcoma, and uterine corpus endometrial carcinoma.
Collapse
|
10
|
Parker AC, Quinteros BI, Piccolo SR. The DNA methylation landscape of five pediatric-tumor types. PeerJ 2022; 10:e13516. [PMID: 35707123 PMCID: PMC9190670 DOI: 10.7717/peerj.13516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/09/2022] [Indexed: 01/17/2023] Open
Abstract
Fewer DNA mutations have been identified in pediatric tumors than in adult tumors, suggesting that alternative tumorigenic mechanisms, including aberrant DNA methylation, may play a prominent role. In one epigenetic process of regulating gene expression, methyl groups are attached at the 5-carbon of the cytosine ring, leading to 5-methylcytosine (5mC). In somatic cells, 5mC occurs mostly in CpG islands, which are often within promoter regions. In Wilms tumors and acute myeloid leukemias, increased levels of epigenetic silencing have been associated with worse patient outcomes. However, to date, researchers have studied methylation primarily in adult tumors and for specific genes-but not on a pan-pediatric cancer scale. We addressed these gaps first by aggregating methylation data from 309 noncancerous samples, establishing baseline expectations for each probe and gene. Even though these samples represent diverse, noncancerous tissue types and population ancestral groups, methylation levels were consistent for most genes. Second, we compared tumor methylation levels against the baseline values for 489 pediatric tumors representing five cancer types: Wilms tumors, clear cell sarcomas of the kidney, rhabdoid tumors, neuroblastomas, and osteosarcomas. Tumor hypomethylation was more common than hypermethylation, and as many as 41.7% of genes were hypomethylated in a given tumor, compared to a maximum of 34.2% for hypermethylated genes. However, in known oncogenes, hypermethylation was more than twice as common as in other genes. We identified 139 probes (31 genes) that were differentially methylated between at least one tumor type and baseline levels, and 32 genes that were differentially methylated across the pediatric tumor types. We evaluated whether genomic events and aberrant methylation were mutually exclusive but did not find evidence of this phenomenon.
Collapse
|
11
|
Wallace A, Porten SP, Lo AA, Oreper D, Lounsbury N, Havnar C, Pechuan-Jorge X, Zill OA, Meng MV. Origins and Timing of Emerging Lesions in Advanced Renal Cell Carcinoma. Mol Cancer Res 2022; 20:909-922. [PMID: 35297992 PMCID: PMC9381131 DOI: 10.1158/1541-7786.mcr-21-0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023]
Abstract
Renal cell carcinoma (RCC) with venous tumor thrombus (VTT) arising from the primary tumor occurs in approximately 10% of cases and is thought to represent more advanced disease. The intravascular nature of VTT suggests that it may serve as a source for hematogenous metastases. RCC with VTT and distant metastasis provides unique opportunities to examine the origins and emergence timing of these distinct tumor lesions, and to identify molecular correlates with disease state. We performed multi-region exome and RNA-sequencing analysis of 16 patients with RCC with VTT, with eight patients also having sequenced metastasis, to identify genomic alterations, biological pathways, and evolutionary processes contributing to VTT and metastasis, and to ask whether metastasis arises directly from or independent of VTT. No specific genomic alterations were associated with VTT. Hallmark copy-number alterations (deletions of 14q, 8p, and 4q) were associated with metastasis and disease recurrence, and secondary driver alterations tended to accumulate in metastatic lineages. Mismatch repair mutational signatures co-occurred across most tumors, suggesting a role for intracellular DNA damage in RCC. Robust phylogenetic timing analysis indicated that metastasis typically emerged before VTT, rather than deriving from it, with the earliest metastases predicted to emerge years before diagnosis. As a result, VTT in metastatic cases frequently derived from a metastatic lineage. Relative to the primary tumor, VTT upregulated immediate-early genes and transcriptional targets of the TNFα/NF-κB pathway, whereas metastases upregulated MTOR and transcriptional targets downstream of mTORC1 activation. IMPLICATIONS These results suggest that VTT and metastasis formation occur independently, VTT presence alone does not necessarily imply more advanced disease with inevitably poor prognosis.
Collapse
Affiliation(s)
- Andrew Wallace
- Department of Oncology Bioinformatics, Genentech, Inc., San Francisco, California
- Corresponding Authors: Oliver A. Zill, Oncology Bioinformatics, Genentech, 501 DNA Way, South San Francisco, CA 94080. Phone: (650) 225-1000; E-mail: ; Maxwell V. Meng, ; and Andrew Wallace,
| | - Sima P. Porten
- Department of Urology, University of California, San Francisco, California
| | - Amy A. Lo
- Department of Research Pathology, Genentech, Inc., San Francisco, California
| | - Daniel Oreper
- Department of Oncology Bioinformatics, Genentech, Inc., San Francisco, California
| | - Nicolas Lounsbury
- Department of Oncology Bioinformatics, Genentech, Inc., San Francisco, California
| | - Charles Havnar
- Department of Research Pathology, Genentech, Inc., San Francisco, California
| | - Ximo Pechuan-Jorge
- Department of Cancer Immunology, Genentech, Inc., San Francisco, California
| | - Oliver A. Zill
- Department of Oncology Bioinformatics, Genentech, Inc., San Francisco, California
- Corresponding Authors: Oliver A. Zill, Oncology Bioinformatics, Genentech, 501 DNA Way, South San Francisco, CA 94080. Phone: (650) 225-1000; E-mail: ; Maxwell V. Meng, ; and Andrew Wallace,
| | - Maxwell V. Meng
- Department of Urology, University of California, San Francisco, California
- Corresponding Authors: Oliver A. Zill, Oncology Bioinformatics, Genentech, 501 DNA Way, South San Francisco, CA 94080. Phone: (650) 225-1000; E-mail: ; Maxwell V. Meng, ; and Andrew Wallace,
| |
Collapse
|
12
|
Bushel PR, Ward J, Burkholder A, Li J, Anchang B. Mitochondrial-nuclear epistasis underlying phenotypic variation in breast cancer pathology. Sci Rep 2022; 12:1393. [PMID: 35082309 PMCID: PMC8791930 DOI: 10.1038/s41598-022-05148-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
The interplay between genes harboring single nucleotide polymorphisms (SNPs) is vital to better understand underlying contributions to the etiology of breast cancer. Much attention has been paid to epistasis between nuclear genes or mutations in the mitochondrial genome. However, there is limited understanding about the epistatic effects of genetic variants in the nuclear and mitochondrial genomes jointly on breast cancer. We tested the interaction of germline SNPs in the mitochondrial (mtSNPs) and nuclear (nuSNPs) genomes of female breast cancer patients in The Cancer Genome Atlas (TCGA) for association with morphological features extracted from hematoxylin and eosin (H&E)-stained pathology images. We identified 115 significant (q-value < 0.05) mito-nuclear interactions that increased nuclei size by as much as 12%. One interaction between nuSNP rs17320521 in an intron of the WSC Domain Containing 2 (WSCD2) gene and mtSNP rs869096886, a synonymous variant mapped to the mitochondrially-encoded NADH dehydrogenase 4 (MT-ND4) gene, was confirmed in an independent breast cancer data set from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). None of the 10 mito-nuclear interactions identified from non-diseased female breast tissues from the Genotype-Expression (GTEx) project resulted in an increase in nuclei size. Comparisons of gene expression data from the TCGA breast cancer patients with the genotype homozygous for the minor alleles of the SNPs in WSCD2 and MT-ND4 versus the other genotypes revealed core transcriptional regulator interactions and an association with insulin. Finally, a Cox proportional hazards ratio = 1.7 (C.I. 0.98-2.9, p-value = 0.042) and Kaplan-Meier plot suggest that the TCGA female breast cancer patients with low gene expression of WSCD2 coupled with large nuclei have an increased risk of mortality. The intergenomic dependency between the two variants may constitute an inherent susceptibility of a more severe form of breast cancer and points to genetic targets for further investigation of additional determinants of the disease.
Collapse
Affiliation(s)
- Pierre R Bushel
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - James Ward
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jianying Li
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
13
|
Haan JC, Bhaskaran R, Ellappalayam A, Bijl Y, Griffioen CJ, Lujinovic E, Audeh WM, Penault-Llorca F, Mittempergher L, Glas AM. MammaPrint and BluePrint comprehensively capture the cancer hallmarks in early-stage breast cancer patients. Genes Chromosomes Cancer 2021; 61:148-160. [PMID: 34841595 PMCID: PMC9299843 DOI: 10.1002/gcc.23014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
MammaPrint® (MP) is a 70‐gene signature that stratifies early‐stage breast cancer patients into low‐ and high risk of distant relapse. Further stratification of MP risk results identifies four risk subgroups, ultra‐low (UL), low, high 1, and high 2, with specific prognostic and predictive outcomes. BluePrint® (BP) is an 80‐gene signature that classifies breast tumors as basal, luminal, or HER2 molecular subtype. To gain insight into their biological significance, we annotated the MP 70‐ and BP 80‐genes with respect to the 10 hallmarks of cancer (HoC). Furthermore, we related gene expression profiles of the extreme ends of the MP low‐ and high‐risk patients (here called, ultra‐low (UL) and ultra‐high (UH) or High2, respectively), to the 10 HoC per BP subtype by differential gene expression and pathway analysis. MP and BP gene functions reflected all 10 HoCs. Most MP and BP genes were associated with sustaining proliferative signaling, followed by genome instability and mutation categories. Based on the gene expression profiles, UL and UH subgroup pathways were down ‐or upregulated, respectively, reflecting proliferative and metastatic features, such as G2M checkpoint, DNA repair, oxidative phosphorylation, immune invasion, PI3K/AKT/mTOR signaling, and hypoxia pathways. Notably, the UH HER2‐type was enriched in several immune signaling pathways, such as IL2/STAT5 signaling and TNFα signaling via NFκB. Our results show that MP and BP gene signatures represent and capture all 10 HoCs and highlight underlying biological processes of MP extreme samples, which might guide treatment decisions as the signature captures the full spectrum of early breast cancers.
Collapse
Affiliation(s)
- Josien C Haan
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | - Rajith Bhaskaran
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | | | - Yannick Bijl
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| | | | | | | | - Frédérique Penault-Llorca
- Department of Pathology and Molecular Pathology, Centre Jean Perrin, Clermont-Ferrand, France.,UMR INSERM 1240, Universite Clermont Auvergne, Clermont-Ferrand, France
| | | | - Annuska M Glas
- Department of Research and Development, Agendia NV, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Creeden JF, Nanavaty NS, Einloth KR, Gillman CE, Stanbery L, Hamouda DM, Dworkin L, Nemunaitis J. Homologous recombination proficiency in ovarian and breast cancer patients. BMC Cancer 2021; 21:1154. [PMID: 34711195 PMCID: PMC8555001 DOI: 10.1186/s12885-021-08863-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination and DNA repair are important for genome maintenance. Genetic variations in essential homologous recombination genes, including BRCA1 and BRCA2 results in homologous recombination deficiency (HRD) and can be a target for therapeutic strategies including poly (ADP-ribose) polymerase inhibitors (PARPi). However, response is limited in patients who are not HRD, highlighting the need for reliable and robust HRD testing. This manuscript will review BRCA1/2 function and homologous recombination proficiency in respect to breast and ovarian cancer. The current standard testing methods for HRD will be discussed as well as trials leading to approval of PARPi's. Finally, standard of care treatment and synthetic lethality will be reviewed.
Collapse
Affiliation(s)
- Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Nisha S Nanavaty
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Katelyn R Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cassidy E Gillman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Danae M Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | |
Collapse
|
15
|
Arakelyan A, Melkonyan A, Hakobyan S, Boyarskih U, Simonyan A, Nersisyan L, Nikoghosyan M, Filipenko M, Binder H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:1266. [PMID: 33525353 PMCID: PMC7865215 DOI: 10.3390/ijms22031266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Ani Melkonyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia;
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Uljana Boyarskih
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Arman Simonyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Maria Nikoghosyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|