1
|
Xu C, She Y, Fu F, Xu C. Production of a new tetravalent vaccine targeting fimbriae and enterotoxin of enterotoxigenic Escherichia coli. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2024; 88:38-44. [PMID: 38595949 PMCID: PMC11000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 04/11/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.
Collapse
Affiliation(s)
- ChongLi Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| | - ChongBo Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, 82 Daxuecheng Road, Chongqing 401331, PR China (Xu, She, Fu); School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China (Xu)
| |
Collapse
|
2
|
Porter CK, Talaat KR, Isidean SD, Kardinaal A, Chakraborty S, Gutiérrez RL, Sack DA, Bourgeois AL. The Controlled Human Infection Model for Enterotoxigenic Escherichia coli. Curr Top Microbiol Immunol 2024; 445:189-228. [PMID: 34669040 DOI: 10.1007/82_2021_242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.
Collapse
Affiliation(s)
- Chad K Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA.
| | - Kawsar R Talaat
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Sandra D Isidean
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Alwine Kardinaal
- NIZO Food Research, Ede, P.O. Box 20, 6710 BA EDE, Kernhemseweg 2, 6718 ZB EDE, The Netherlands
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Ramiro L Gutiérrez
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, 20910, USA
| | - David A Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - A Louis Bourgeois
- PATH|Center for Vaccine Innovation and Access, 455 Massachusetts Avenue NW, Suite 1000, Washington, DC, 20001, USA
| |
Collapse
|
3
|
Strong Association between Diarrhea and Concentration of Enterotoxigenic Escherichia coli Strain TW10722 in Stools of Experimentally Infected Volunteers. Pathogens 2023; 12:pathogens12020283. [PMID: 36839555 PMCID: PMC9960819 DOI: 10.3390/pathogens12020283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal illness in children and travelers in low- and middle-income countries. When volunteers are infected with ETEC strains, as part of experimental infection studies, some do not develop diarrhea. To improve our understanding of how these volunteers are protected, we investigated the association between stool ETEC DNA concentration, as determined by quantitative PCR, and the development and severity of disease in 21 volunteers who had been experimentally infected with ETEC strain TW10722. We found a strong association between maximum stool ETEC DNA concentration and the development of diarrhea: all of the 11 volunteers who did not develop diarrhea had <0.99% TW10722-specific DNA in their stools throughout the follow-up period of up to 9 days, while all of the 10 volunteers who did develop diarrhea had maximum DNA concentrations of ≥0.99%. Most likely, these maximum stool TW10722 DNA concentrations reflect the level of intestinal colonization and the risk of experiencing diarrhea, thereby, seems to be directly dependent on the level of colonization. Thus, the development and availability of vaccines and other prophylactic measures, even if they only partially reduce colonization, could be important in the effort to reduce the burden of ETEC diarrhea.
Collapse
|
4
|
Xu C, Peng K, She Y, Fu F, Shi Q, Lin Y, Xu C. Preparation of novel trivalent vaccine against enterotoxigenic Escherichia coli for preventing newborn piglet diarrhea. Am J Vet Res 2023; 84:ajvr.22.10.0183. [PMID: 36576801 DOI: 10.2460/ajvr.22.10.0183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To develop a trivalent genetically engineered inactivated Escherichia coli vaccine (K88ac-3STa-LTB) that neutralizes the STa toxin by targeting fimbriae and entertoxins for the treatment of enterotoxigenic E coli. ANIMALS 18- to 22-g mice, rabbits, pregnant sows. PROCEDURES Using PCR, the K88ac gene and LTB gene were cloned separately from the template C83902 plasmid. At the same time, the 3 STa mutant genes were also amplified by using the gene-directed mutation technology. Immune protection experiments were performed, and the minimum immune dose was determined in mice and pregnant sows. RESULTS The ELISA test could be recognized by the STa, LTB, and K88ac antibodies. Intragastric administration in the suckling mouse confirmed that the protein had lost the toxicity of the natural STa enterotoxin. The results of the immune experiments showed that K88ac-3STa-LTB protein could stimulate rabbits to produce serum antibodies and neutralize the toxicity of natural STa enterotoxin. The efficacy test of the K88ac-3STa-LTB-inactivated vaccine showed that the immune protection rate of the newborn piglets could reach 85% on the first day after suckling. At the same time, it was determined that the minimum immunization doses for mice and pregnant sows were 0.2 and 2.5 mL, respectively. CLINICAL RELEVANCE This research indicates that the K88ac-3STa-LTB trivalent genetically engineered inactivated vaccine provides a broad immune spectrum for E coli diarrhea in newborn piglets and prepares a new genetically engineered vaccine candidate strain for prevention of E coli diarrhea in piglets.
Collapse
Affiliation(s)
- ChongLi Xu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Kun Peng
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yuhan She
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Fengyang Fu
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Qinhong Shi
- College of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, People's Republic of China
| | - Yimin Lin
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - ChongBo Xu
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, People's Republic of China
| |
Collapse
|
5
|
Sauvaitre T, Van Landuyt J, Durif C, Roussel C, Sivignon A, Chalancon S, Uriot O, Van Herreweghen F, Van de Wiele T, Etienne-Mesmin L, Blanquet-Diot S. Role of mucus-bacteria interactions in Enterotoxigenic Escherichia coli (ETEC) H10407 virulence and interplay with human microbiome. NPJ Biofilms Microbiomes 2022; 8:86. [PMID: 36266277 PMCID: PMC9584927 DOI: 10.1038/s41522-022-00344-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The intestinal mucus layer has a dual role in human health constituting a well-known microbial niche that supports gut microbiota maintenance but also acting as a physical barrier against enteric pathogens. Enterotoxigenic Escherichia coli (ETEC), the major agent responsible for traveler's diarrhea, is able to bind and degrade intestinal mucins, representing an important but understudied virulent trait of the pathogen. Using a set of complementary in vitro approaches simulating the human digestive environment, this study aimed to describe how the mucus microenvironment could shape different aspects of the human ETEC strain H10407 pathophysiology, namely its survival, adhesion, virulence gene expression, interleukin-8 induction and interactions with human fecal microbiota. Using the TNO gastrointestinal model (TIM-1) simulating the physicochemical conditions of the human upper gastrointestinal (GI) tract, we reported that mucus secretion and physical surface sustained ETEC survival, probably by helping it to face GI stresses. When integrating the host part in Caco2/HT29-MTX co-culture model, we demonstrated that mucus secreting-cells favored ETEC adhesion and virulence gene expression, but did not impede ETEC Interleukin-8 (IL-8) induction. Furthermore, we proved that mucosal surface did not favor ETEC colonization in a complex gut microbial background simulated in batch fecal experiments. However, the mucus-specific microbiota was widely modified upon the ETEC challenge suggesting its role in the pathogen infectious cycle. Using multi-targeted in vitro approaches, this study supports the major role played by mucus in ETEC pathophysiology, opening avenues in the design of new treatment strategies.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Josefien Van Landuyt
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Claude Durif
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Charlène Roussel
- Université Laval, Nutrition and Functional Foods Institute (INAF), 2440 Bd Hochelaga Suite 1710, Québec, QC, G1V 0A6, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), 63000, Clermont-Ferrand, France
| | - Sandrine Chalancon
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Ophélie Uriot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Florence Van Herreweghen
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRAE, UMR 454 MEDIS, Microbiologie Environnement Digestif et Santé (MEDIS), CRNH Auvergne, 63000, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Jones RM, Seo H, Zhang W, Sack DA. A multi-epitope fusion antigen candidate vaccine for Enterotoxigenic Escherichia coli is protective against strain B7A colonization in a rabbit model. PLoS Negl Trop Dis 2022; 16:e0010177. [PMID: 35139116 PMCID: PMC8863229 DOI: 10.1371/journal.pntd.0010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of children's and travelers' diarrhea. Developing effective vaccines against this heterologous group has proven difficult due to the varied nature of toxins and adhesins that determine their pathology. A multivalent candidate vaccine was developed using a multi-epitope fusion antigen (MEFA) vaccinology platform and shown to effectively elicit broad protective antibody responses in mice and pigs. However, direct protection against ETEC colonization of the small intestine was not measured in these systems. Colonization of ETEC strains is known to be a determining factor in disease outcomes and is adhesin-dependent. In this study, we developed a non-surgical rabbit colonization model to study immune protection against ETEC colonization in rabbits. We tested the ability for the MEFA-based vaccine adhesin antigen, in combination with dmLT adjuvant, to induce broad immune responses and to protect from ETEC colonization of the rabbit small intestine. Our results indicate that the candidate vaccine MEFA antigen elicits antibodies in rabbits that react to seven adhesins included in its construction and protects against colonization of a challenge strain that consistently colonized naïve rabbits.
Collapse
Affiliation(s)
- Richard M. Jones
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, United States of America
- University of Washington, Department of Microbiology, Seattle, Washington, United States of America
- * E-mail:
| | - Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - David A. Sack
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, United States of America
| |
Collapse
|