1
|
Zhu HH, Liu MM, Boekhout T, Wang QM. Improvement of a MALDI-TOF database for the reliable identification of Candidozyma auris (formally Candida auris) and related species. Microbiol Spectr 2025; 13:e0144424. [PMID: 39560426 PMCID: PMC11705835 DOI: 10.1128/spectrum.01444-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a promising technique for the rapid identification microorganisms. The aim of this study was to create a new database for the accurate identification of Candidozyma auris (formerly known as Candida auris) and 11 species of the Candidozyma haemuli species complex, including C. chanthaburiensis, C. duobushaemuli, C. haemuli, C. heveicola, C. khanbhai, C. konsanensis, C. metrosideri, C. ohialehuae, C. pseudohaemuli, C. ruelliae, and C. vulturna. Seventy-one Candidozyma isolates from different national institutions were studied. Thirty-seven strains were used to create a MALDI-TOF (microTyper MS) database using the formic acid extraction method. The validation of this database was performed with 34 other strains of the genus Candidozyma, and the result was compared with the identification results when using DBRs v1.0.0.4 (Tianrui, China). Our library allowed a 100% identification of the evaluated strains with all strains showing log scores of >2.0. Repeatability and reproducibility tests result showed a coefficient of variation of the log score values of less than 5%. The MALDI-TOF MS system can identify C. auris and related species quickly and accurately. This method will play a crucial role in accurately diagnosing infectious agents of the genus Candidozyma in clinical practice. IMPORTANCE Importance Candidozyma auris, also known as Candida auris, has quickly spread across the world, and prompt identification of C. auris from infected individuals is critical. However, a standard identification method is lacking for the identification of C. auris in clinical and public health laboratories. To make matters worse, its biochemical assimilation profile was found to be similar to that of closely related and even no-related species, leading to frequent misidentification. To improve diagnostics of this and closely related species, we created a database of reference mass spectra resulting in the efficient and correct identification of all Candidozyma species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Moreover, potential pathogenic species of Candidozyma can be effectively identified by MALDI-TOF MS, and differentiated from non-clinically relevant phylogenetic relatives. Thus, MALDI-TOF MS may help expedite laboratory diagnosis and treatment of C. auris and related species of clinical importance and help the clinician to decide on early treatment.
Collapse
Affiliation(s)
- Hui-Hui Zhu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Miao-Miao Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Teun Boekhout
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong’an New Area) of MOE, Baoding, Hebei, China
| |
Collapse
|
2
|
Taverna CG, Córdoba S, Haim MS, Lombardo M, Vivot ME, Arias BA, Vivot W, Szusz W, Abbey D, Poklépovich TJ, Canteros CE. Molecular Epidemiology and Antifungal Susceptibility Profile of Candidozyma Isolates From Argentina. Mycoses 2025; 68:e70025. [PMID: 39846347 DOI: 10.1111/myc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Epidemiological surveillance of Candidozyma sp. has become important because many species of this new genus have been reported to be responsible for nosocomial outbreaks and to exhibit elevated minimal inhibitory concentrations (MIC) to one or more classes of antifungal drugs. OBJECTIVES To describe the genetic relationships among Argentinian clinical isolates belonging to the Candidozyma genus and to study the molecular mechanisms associated with antifungal resistance. METHODS We performed whole-genome sequencing of 41 isolates. Identification was based on ribosomal DNA sequencing and susceptibility testing was determined according to the EUCAST document. Phylogenetic analysis, non-synonymous mutations in genes associated with antifungal resistance and the presence of copy number variations (CNVs) were investigated. RESULTS We identified 12 Candidozyma haemuli, 11 Candidozyma haemuli var. vulneris, 5 Cz. haemuli/ Cz. haemuli var. vulneris ITS hybrids, 8 Candidozyma duobushaemuli and 5 Candidozyma cf. pseudohaemuli. Phylogenetic analysis, together with clinical data, demonstrated nosocomial transmission events. In addition, Cz. haemuli and Cz. haemuli var. vulneris were not separated in the phylogenetic tree; the Cz. cf. pseudohaemuli isolates clustered distantly from the Cz. pseudohaemuli type strain. Most isolates were resistant to amphotericin B, and two Cz. haemuli isolates showed fluconazole resistance and Y132F mutation in ERG11. We did not find CNV in genes associated with antifungal resistance. CONCLUSIONS These findings highlight the need for epidemiological surveillance of these species and the study of molecular mechanisms associated with antifungal resistance. Furthermore, we propose a taxonomic revision for Cz. haemuli var. vulneris and Cz. pseudohaemuli based on genomic data.
Collapse
Affiliation(s)
- Constanza Giselle Taverna
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Córdoba
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Sol Haim
- Unidad Operativa Centro Nacional de Genómica y Bioinformática-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Lombardo
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Ezequiel Vivot
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bárbara Abigail Arias
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vivot
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wanda Szusz
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Darren Abbey
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomas Javier Poklépovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cristina Elena Canteros
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Dlauchy D, Álvarez-Pérez S, Tóbiás A, Péter G. Vishniacozyma floricola sp. nov., a flower-related tremellomycetous yeast species from Europe. Int J Syst Evol Microbiol 2024; 74. [PMID: 39466839 DOI: 10.1099/ijsem.0.006555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
During the course of two independent studies conducted in Hungary and Spain, four conspecific yeast strains were isolated from flowers of different plant species. DNA sequences of two barcoding regions, the D1/D2 domain of the LSU rRNA gene and the internal transcribed spacer (ITS) region (ITS1-5.8S rRNA gene-ITS2), revealed that the four strains represent an undescribed Vishniacozyma (family Bulleribasidiaceae, Basidiomycota) species. In terms of pairwise sequence similarities and according to our phylogenetic analyses of the concatenated DNA sequences of the ITS region and the D1/D2 domain of the LSU rRNA gene, the undescribed species is most closely related to Vishniacozyma melezitolytica, a yeast species of phylloplane origin. The novel species differs from the type strain of V. melezitolytica by 8 substitutions and 3 insertion/deletion (indels) and 11 substitutions and 5 indels along the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. In addition to the DNA sequence divergences, the two species differ in some physiological characters as well. We propose the species Vishniacozyma floricola sp. nov. to accommodate the above-noted strains (holotype, NCAIM Y.02320; isotype, CBS 18939; MycoBank number, 856028).
Collapse
Affiliation(s)
- Dénes Dlauchy
- National Collection of Agricultural and Industrial Microorganisms, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Andrea Tóbiás
- National Collection of Agricultural and Industrial Microorganisms, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Gábor Péter
- National Collection of Agricultural and Industrial Microorganisms, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| |
Collapse
|
4
|
Cafarchia C, Mendoza-Roldan JA, Rhimi W, C I Ugochukwu I, Miglianti M, Beugnet F, Giuffrè L, Romeo O, Otranto D. Candida auris from the Egyptian cobra: Role of snakes as potential reservoirs. Med Mycol 2024; 62:myae056. [PMID: 38816207 DOI: 10.1093/mmy/myae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy , 70010
| | | | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | - Iniobong C I Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria, 410001
| | - Mara Miglianti
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | | | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Clinical Sciences, City University of Hong Kong, 518057
| |
Collapse
|
5
|
Álvarez-Pérez S, Rodríguez-Franco F, García-Sancho M, Tercero-Guerrero D, Sainz Á, García ME, Blanco JL. Analysis of the culturable gut yeast microbiota of dogs with digestive disorders. Res Vet Sci 2024; 168:105153. [PMID: 38219470 DOI: 10.1016/j.rvsc.2024.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Despite the increasing interest in studying the gut mycobiota of dogs, the association between fungal colonization and the development of digestive disorders in this species remains largely understudied. On the other hand, the high prevalence of antifungal-resistant yeasts detected in previous studies in samples from animals represents a major threat to public health. We analyzed the presence of culturable yeasts in 112 rectal swab samples obtained from dogs with digestive disorders attended in a veterinary teaching hospital. Our results revealed that Malassezia pachydermatis was frequently isolated from the studied dog population (33.9% of samples), and that the isolation of this yeast was significantly associated to the age of animals, but not to their sex, disease group, or the presence of vomits and/or diarrhea. In contrast, other yeast species were less prevalent (17.9% of samples in total), and their isolation was not significantly associated to any variable included in the analysis. Additionally, we observed that 97.5% of the studied M. pachydermatis isolates (n = 158, 1-6 per positive episode) displayed a minimum inhibitory concentration (MIC) value >4 μg/ml to nystatin, 31.6% had a MIC ≥32 μg/ml to fluconazole, and 27.2% had a MIC >4 μg/ml to amphotericin B. The antifungal susceptibility profiles of non-Malassezia (n = 43, 1-7 per episode) were more variable and included elevated MIC values for some antifungal-species combinations. These results confirm that the intestine of dogs is a reservoir of opportunistic pathogenic yeasts and suggest that the prevalence of M. pachydermatis colonization depends more on the age of animals than on any specific digestive disorder.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain.
| | - Fernando Rodríguez-Franco
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Mercedes García-Sancho
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Daniela Tercero-Guerrero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Ángel Sainz
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Complutense University of Madrid, Avenida Puerta de Hierro s/n, Madrid 28040, Spain
| |
Collapse
|
6
|
Agarbati A, Gattucci S, Canonico L, Ciani M, Comitini F. Yeast communities related to honeybees: occurrence and distribution in flowers, gut mycobiota, and bee products. Appl Microbiol Biotechnol 2024; 108:175. [PMID: 38276993 PMCID: PMC10817854 DOI: 10.1007/s00253-023-12942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024]
Abstract
Honeybee (Apis mellifera) is an important agricultural pollinator and a model for sociality. In this study, a deep knowledge on yeast community characterizing the honeybees' environmental was carried out. For this, a total of 93 samples were collected: flowers as food sources, bee gut mycobiota, and bee products (bee pollen, bee bread, propolis), and processed using culture-dependent techniques and a molecular approach for identification. The occurrence of yeast populations was quantitatively similar among flowers, bee gut mycobiota, and bee products. Overall, 27 genera and 51 species were identified. Basidiomycetes genera were predominant in the flowers while the yeast genera detected in all environments were Aureobasidium, Filobasidium, Meyerozyma, and Metschnikowia. Fermenting species belonging to the genera Debaryomyces, Saccharomyces, Starmerella, Pichia, and Lachancea occurred mainly in the gut, while most of the identified species of bee products were not found in the gut mycobiota. Five yeast species, Meyerozyma guilliermondii, Debaryomyces hansenii, Hanseniaspora uvarum, Hanseniaspora guilliermondii, and Starmerella roseus, were present in both summer and winter, thus indicating them as stable components of bee mycobiota. These findings can help understand the yeast community as a component of the bee gut microbiota and its relationship with related environments, since mycobiota characterization was still less unexplored. In addition, the gut microbiota, affecting the nutrition, endocrine signaling, immune function, and pathogen resistance of honeybees, represents a useful tool for its health evaluation and could be a possible source of functional yeasts. KEY POINTS: • The stable yeast populations are represented by M. guilliermondii, D. hansenii, H. uvarum, H. guilliermondii, and S. roseus. • A. pullulans was the most abondance yeast detective in the flowers and honeybee guts. • Aureobasidium, Meyerozyma, Pichia, and Hanseniaspora are the main genera resident in gut tract.
Collapse
Affiliation(s)
- Alice Agarbati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Gattucci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Laura Canonico
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Maurizio Ciani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Comitini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
7
|
de Jong AW, Al-Obaid K, Mohd Tap R, Gerrits van den Ende B, Groenewald M, Joseph L, Ahmad S, Hagen F. Candida khanbhai sp. nov., a new clinically relevant yeast within the Candida haemulonii species complex. Med Mycol 2023; 61:7000835. [PMID: 36694950 PMCID: PMC9936790 DOI: 10.1093/mmy/myad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Invasive fungal infections caused by non-albicans Candida species are increasingly reported. Recent advances in diagnostic and molecular tools enabled better identification and detection of emerging pathogenic yeasts. The Candida haemulonii species complex accommodates several rare and recently described pathogenic species, C. duobushaemulonii, C. pseudohaemulonii, C. vulturna, and the most notorious example is the outbreak-causing multi-drug resistant member C. auris. Here, we describe a new clinically relevant yeast isolated from geographically distinct regions, representing the proposed novel species C. khanbhai, a member of the C. haemulonii species complex. Moreover, several members of the C. haemulonii species complex were observed to be invalidly described, including the clinically relevant species C. auris and C. vulturna. Hence, the opportunity was taken to correct this here, formally validating the names of C. auris, C. chanthaburiensis, C. konsanensis, C. metrosideri, C. ohialehuae, and C. vulturna.
Collapse
Affiliation(s)
- Auke W de Jong
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Khaled Al-Obaid
- Department of Microbiology, Mubarak Al-Kabir Hospital, Jabriya, Kuwait
| | - Ratna Mohd Tap
- Mycology Section, Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Selangor, Malaysia
| | | | - Marizeth Groenewald
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ferry Hagen
- To whom correspondence should be addressed. Ferry Hagen, PhD, FESCMID, FECMM. Westerdijk Fungal Biodiversity Institute (WI-KNAW), Department of Medical Mycology, Uppsalalaan 8, 3584CT Utrecht, The Netherlands. Tel: +31-030-2122-600; E-mail: ,
| |
Collapse
|
8
|
Cavalieri D, Valentini B, Stefanini I. Going wild: ecology and genomics are crucial to understand yeast evolution. Curr Opin Genet Dev 2022; 75:101922. [PMID: 35691146 DOI: 10.1016/j.gde.2022.101922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Improved and more accessible genome-sequencing approaches have allowed the analysis of large sets of natural yeast isolates. As a consequence, this unprecedented level of description of yeast-genome characteristics and variations in natural environments has provided crucial insights on yeast ecology and evolution. Here, we review some of the most relevant and intriguing aspects of yeast evolution pointed out, thanks to the combination of yeast ecology and genomics, and critically examine the resulting improvement of our knowledge on this field. Only integrated approaches, taking into consideration not only the characteristics of the microbe but also those of the hosting environment, will significantly move forward the exploration of yeast diversity, ecology, and evolution.
Collapse
Affiliation(s)
| | - Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
9
|
Behind the nectar: the yeast community in bromeliads inflorescences after the exudate removal. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01728-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|