1
|
Costantini F, Cesari E, Lovecchio N, Scortichini M, Scala V, Loreti S, Pucci N. Microfluidic Array Enables Rapid Testing of Natural Compounds Against Xylella fastidiosa. PLANTS (BASEL, SWITZERLAND) 2025; 14:872. [PMID: 40265769 PMCID: PMC11946115 DOI: 10.3390/plants14060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
The bacterial pathogen Xylella fastidiosa (Xf), which causes several plant diseases with significant economic impacts on agriculture and the environment, remains a challenge to manage due to its wide host range. This study investigated the in vitro antibacterial effects of natural compounds, including Trametes versicolor extract, clove essential oil, and the resistance inducer FossilⓇ, against X. fastidiosa subsp. fastidiosa using an antibacterial susceptibility testing (AST) method based on microfluidic channels. This novel method was compared with the traditional broth macrodilution method to assess its reliability and the potential advantages microfluidics offers. For each substance and test, both the ability to limit planktonic growth (reported as the minimum inhibitory concentration) and the ability to inhibit biofilm formation were evaluated. The results suggest that compared to the macrodilution method, microfluidic channels allow for a more rapid AST execution, use less material, and allow for real-time observation of bacterial behavior under a continuous flow of nutrients and antibacterial substances. All tested products demonstrated high antibacterial efficacy against Xf with the macrodilution method, yielding comparable results with microfluidic AST. These findings highlight the antimicrobial properties of the tested substances and establish the groundwork for applying this new technique to select promising eco-friendly products for potential future field applications in controlling Xf.
Collapse
Affiliation(s)
- Francesca Costantini
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA-DC), 00156 Rome, Italy; (E.C.); (V.S.); (S.L.); (N.P.)
| | - Erica Cesari
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA-DC), 00156 Rome, Italy; (E.C.); (V.S.); (S.L.); (N.P.)
| | - Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, 00184 Rome, Italy;
| | - Marco Scortichini
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA-OFA), 00134 Rome, Italy;
| | - Valeria Scala
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA-DC), 00156 Rome, Italy; (E.C.); (V.S.); (S.L.); (N.P.)
| | - Stefania Loreti
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA-DC), 00156 Rome, Italy; (E.C.); (V.S.); (S.L.); (N.P.)
| | - Nicoletta Pucci
- Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA-DC), 00156 Rome, Italy; (E.C.); (V.S.); (S.L.); (N.P.)
| |
Collapse
|
2
|
Wallis CM, Baumgartner K. Fatty acid methyl ester (FAME) profiling for species-specific characterization and detection of fungal pathogens that cause tree and grapevine trunk diseases. Mycologia 2025; 117:319-330. [PMID: 39841972 DOI: 10.1080/00275514.2024.2439753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
Fungal trunk diseases are of major concern for tree fruit, nut, and grape growers throughout the world. These diseases include Eutypa dieback of grape, caused by Eutypa lata, band canker of almond, caused by Neofusicoccum mediterraneum and Neofusicoccum parvum, and twig and branch dieback of walnut, caused by N. mediterraneum, Botryosphaeria dieback of grape, caused by Diplodia mutila, Diplodia seriata, N. mediterraneum, and N. parvum, and esca of grape, caused by Phaeomoniella chlamydospora and Phaeoacremonium minimum. Given the common occurrence of mixed infections, and the similar wood symptoms at the macroscopic level, species-specific detection tools are needed. Fatty acid methyl ester (FAME) profiling can be an effective and inexpensive diagnostic tool. FAME analyses were conducted on pure cultures of multiple isolates per species to characterize profiles and assess whether this technique could result in consistent identification. FAME profiles were dominated by oleic acid (18:1 ω9c) and palmitic acid (16:0), with less abundant FAMEs in different ratios for each species and isolates within species. Canonical discriminant analyses revealed which minor FAMEs were most variable, with a total of 20 different FAMEs that can explain 69.01% of profile variance in the first two canonicals. Using these analyses, samples were self-tested and correctly sorted 97.18% of the time. Within species, canonical discriminant analyses were able to separate isolates further, often by original geographic location or by host plant species. These results further suggest that potential novel species, subspecies, or races may be present among the isolates analyzed, demonstrating the capacity of FAME profiling to have a role in discovering cryptic species and accurately identifying fungal pathogens in conjunction with other molecular techniques and genomic analyses.
Collapse
Affiliation(s)
- Christopher M Wallis
- Crop Diseases, Pests and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, California 93648
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, USDA-ARS Davis, Davis, California 95616
| |
Collapse
|
3
|
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024; 16:663. [PMID: 38794325 PMCID: PMC11124934 DOI: 10.3390/pharmaceutics16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6-C2-C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| |
Collapse
|
4
|
Francesconi S, Ronchetti R, Camaioni E, Giovagnoli S, Sestili F, Palombieri S, Balestra GM. Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. PLANTS (BASEL, SWITZERLAND) 2023; 12:1223. [PMID: 36986912 PMCID: PMC10054448 DOI: 10.3390/plants12061223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Riccardo Ronchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Krugner R, Rogers EE, Burbank LP, Wallis CM, Ledbetter CA. Insights Regarding Resistance of 'Nemaguard' Rootstock to the Bacterium Xylella fastidiosa. PLANT DISEASE 2022; 106:2074-2081. [PMID: 35253489 DOI: 10.1094/pdis-01-22-0136-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
'Nemaguard' is a commonly used rootstock for almond and stone fruits due to resistance to nematodes and enhanced scion vigor. Nemaguard also happens to be resistant to strains of Xylella fastidiosa that cause almond leaf scorch disease. Previous research showed that prior to June-budding, this rootstock can prevent infection of almond nursery stock by X. fastidiosa. Further, the rootstock also promotes recovery from infection in susceptible almond scions. Objectives of this study were to 1) compare movement and bacterial populations of X. fastidiosa in almond and Nemaguard, 2) determine whether the metabolic profile of infected versus noninfected plants of each species correspond with differences in pathogen distribution, and 3) evaluate the impact of feeding on Nemaguard on transmission efficiency and pathogen populations in insects. Results showed limited or no movement of X. fastidiosa beyond the point of mechanical inoculation in Nemaguard, whereas X. fastidiosa was detected in susceptible almond and isolated from plant samples distal to the point of inoculation. Large differences in the concentration of phenolic compounds between Nemaguard and almond were also found, although this was not impacted by infection status. After acquiring X. fastidiosa from infected plants, vector access periods of up to 14 days on Nemaguard neither reduced pathogen populations in vectors nor reduced transmission efficiency of X. fastidiosa to susceptible plants when compared with similar vector-access periods on susceptible grapevines. Results suggest Nemaguard, in spite of having high phenolic concentrations in its xylem, does not directly impact X. fastidiosa survival and that future research should focus on identification of potential physical traits that prevent bacterial attachment, multiplication, or movement within the plant.
Collapse
Affiliation(s)
- Rodrigo Krugner
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Elizabeth E Rogers
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Fort Detrick, MD 21702-5023
| | - Lindsey P Burbank
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Christopher M Wallis
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Craig A Ledbetter
- USDA-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
6
|
Catalano A, Ceramella J, Iacopetta D, Mariconda A, Scali E, Bonomo MG, Saturnino C, Longo P, Aquaro S, Sinicropi MS. Thidiazuron: New Trends and Future Perspectives to Fight Xylella fastidiosa in Olive Trees. Antibiotics (Basel) 2022; 11:947. [PMID: 35884201 PMCID: PMC9312276 DOI: 10.3390/antibiotics11070947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
These days, most of our attention has been focused on the COVID-19 pandemic, and we have often neglected what is happening in the environment. For instance, the bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy, called Olive Quick Decline Syndrome (OQDS), specifically caused by X. fastidiosa subspecies pauca ST53, which affects the Salento olive trees (Apulia, South-East Italy). This bacterium, transmitted by the insect Philaenus spumarius, is negatively reshaping the Salento landscape and has had a very high impact in the production of olives, leading to an increase of olive oil prices, thus new studies to curb this bacterium are urgently needed. Thidiazuron (TDZ), a diphenylurea (N-phenyl-1,2,3-thiadiazol-5-yl urea), has gained considerable attention in recent decades due to its efficient role in plant cell and tissue culture, being the most suitable growth regulator for rapid and effective plant production in vitro. Its biological activity against bacteria, fungi and biofilms has also been described, and the use of this low-cost compound to fight OQDS may be an intriguing idea.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Elisabetta Scali
- Department of Health Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (M.G.B.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (D.I.); (S.A.); (M.S.S.)
| |
Collapse
|
7
|
Moll L, Badosa E, Planas M, Feliu L, Montesinos E, Bonaterra A. Antimicrobial Peptides With Antibiofilm Activity Against Xylella fastidiosa. Front Microbiol 2021; 12:753874. [PMID: 34819923 PMCID: PMC8606745 DOI: 10.3389/fmicb.2021.753874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
Xylella fastidiosa is a plant pathogen that was recently introduced in Europe and is causing havoc to its agriculture. This Gram-negative bacterium invades the host xylem, multiplies, and forms biofilm occluding the vessels and killing its host. In spite of the great research effort, there is no method that effectively prevents or cures hosts from infections. The main control strategies up to now are eradication, vector control, and pathogen-free plant material. Antimicrobial peptides have arisen as promising candidates to combat this bacterium due to their broad spectrum of activity and low environmental impact. In this work, peptides previously reported in the literature and newly designed analogs were studied for its bactericidal and antibiofilm activity against X. fastidiosa. Also, their hemolytic activity and effect on tobacco leaves when infiltrated were determined. To assess the activity of peptides, the strain IVIA 5387.2 with moderate growth, able to produce biofilm and susceptible to antimicrobial peptides, was selected among six representative strains found in the Mediterranean area (DD1, CFBP 8173, Temecula, IVIA 5387.2, IVIA 5770, and IVIA 5901.2). Two interesting groups of peptides were identified with bactericidal and/or antibiofilm activity and low-moderate toxicity. The peptides 1036 and RIJK2 with dual (bactericidal-antibiofilm) activity against the pathogen and moderate toxicity stand out as the best candidates to control X. fastidiosa diseases. Nevertheless, peptides with only antibiofilm activity and low toxicity are also promising agents as they could prevent the occlusion of xylem vessels caused by the pathogen. The present work contributes to provide novel compounds with antimicrobial and antibiofilm activity that could lead to the development of new treatments against diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
8
|
Xylella fastidiosa in Olive: A Review of Control Attempts and Current Management. Microorganisms 2021; 9:microorganisms9081771. [PMID: 34442850 PMCID: PMC8397937 DOI: 10.3390/microorganisms9081771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 11/17/2022] Open
Abstract
Since 2013, Xylella fastidiosa Wells et al. has been reported to infect several hosts and to be present in different areas of Europe. The main damage has been inflicted on the olive orchards of southern Apulia (Italy), where a severe disease associated with X. fastidiosa subspecies pauca strain De Donno has led to the death of millions of trees. This dramatic and continuously evolving situation has led to European and national (Italian and Spanish) measures being implemented to reduce the spread of the pathogen and the associated olive quick decline syndrome (OQDS). Research has been also carried out to find solutions to better and directly fight the bacterium and its main insect vector, Philaenus spumarius L. In the course of this frantic effort, several treatments based on chemical or biological substances have been tested, in addition to plant breeding techniques and integrated pest management approaches. This review aims to summarize the attempts made so far and describe the prospects for better management of this serious threat, which poses alarming questions for the future of olive cultivation in the Mediterranean basin and beyond.
Collapse
|