1
|
Li Y, Yang W, Chen H, Jin Z, Dong J, Ma L, Ji Z. Comprehensive pan-cancer single-cell analysis reveals glycolysis-related signatures as predictive biomarkers for immunotherapy response and their role in bladder cancer. Int Immunopharmacol 2025; 152:114381. [PMID: 40058104 DOI: 10.1016/j.intimp.2025.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Glycolysis is a vital metabolic biological process in tumor progression and immune modulation. This study comprehensively investigated the roles of glycolysis in pan-cancer, especially in bladder cancer. Exploration of 34 single-cell RNA sequencing (scRNA-seq) cohorts, eight ICI-treated bulk RNA-seq cohorts, and TCGA bulk pan-cancer RNA-seq cohorts uncovered a Glycolysis.Sig which strongly correlated with immunotherapy response and demonstrated excellent predictive performance in prognosis and immune response. Hub-Glycolysis.Sig exhibited varying interactions with the immune microenvironment based on cancer type. In bladder cancer, higher glycolysis risk scores correlated with poorer prognosis, with distinct immune infiltration characteristics between subtypes. scRNA-seq revealed high glycolysis levels in bladder epithelial cells. COPB2 was highly expressed in bladder cancer, promoting cell proliferation, migration, and glycolytic activity in vitro and in vivo. Our large-scale data analysis confirmed the negative correlation between glycolysis and immunotherapy outcomes, identifying Glycolysis.Sig as a novel predictive biomarker. Hub-Glycolysis.Sig provides clinical insights for bladder cancer therapy strategies, while COPB2 and other potential therapeutic targets facilitate personalized cancer treatment.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jie Dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
2
|
Samanta S, Roy J, Debnath B, Ljungman M, Neamati N. PSP205, a Novel Phenyl Sulfonyl Piperidine, Induces Apoptotic Cell Death in Colon Cancer by Modulating Coat Protein Complex-Mediated Vesicle Trafficking. ACS Pharmacol Transl Sci 2025; 8:1072-1086. [PMID: 40242573 PMCID: PMC11997887 DOI: 10.1021/acsptsci.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 04/18/2025]
Abstract
The endoplasmic reticulum (ER) stress and autophagic pathways offer attractive targets for the development of new cancer drugs. Here, we identified a novel phenyl sulfonyl piperidine, PSP205, that induces prolonged ER-stress-mediated autophagy and apoptosis in colon cancer cells. Transcriptome analysis of cells exposed to PSP205 unveiled transcriptional upregulation of genes associated with the ER stress response or unfolded protein response (UPR), in addition to vesicle transport. Among the top upregulated genes, DNAJB9, XBP1, PDIA4, HSPA5, SEC24D, and SEC11C are implicated in ER stress. Gene set enrichment analysis revealed the enrichment of gene sets involved in the UPR, mTORC1 signaling, hypoxia, the P53 pathway, apoptosis, and the ER-Golgi-vesicle-mediated transport pathway. Mechanistic studies showed that PSP205 acts on the IRE1-TRAF2-JNK pathway to modulate autophagic flux, leading to macroautophagy, ER-phagy, and deformation of Golgi. Our study also demonstrated that PSP205 decreases the expression of the COPI coat complex subunit beta 2 (COPB2) in the presence of COPB2 siRNA. Furthermore, PSP205 synergistically killed colon cancer cells in combination with proteasome and topoisomerase inhibitors. Cumulatively, our findings suggest that PSP205 targets cancer cells via a novel mechanism, specifically by decreasing the level of COPB2, which has not been extensively studied in the context of cancer therapy development and warrants further investigation.
Collapse
Affiliation(s)
- Soma Samanta
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bikash Debnath
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Department
of Radiation Oncology, Rogel Cancer Center, and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
WU BIAO, GUO XIANLIN, WU ZHISHI, CHEN LIANG, ZHANG SUQING. COPB2 promotes hepatocellular carcinoma progression through regulation of YAP1 nuclear translocation. Oncol Res 2025; 33:975-988. [PMID: 40191726 PMCID: PMC11964868 DOI: 10.32604/or.2025.058085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/13/2024] [Indexed: 04/09/2025] Open
Abstract
Objectives Although Yes-associated protein 1 (YAP1) is an important oncogene in hepatocellular carcinoma (HCC) progression, its nuclear localization prevents it from being considered a potential therapeutic target. Recently, studies have reported that coatomer protein complex subunit beta 2 (COPB2) also plays a critical role in HCC development; however its mechanism of action is unclear. This study aimed to investigate the role of COPB2 and YAP1 in the progression of HCC and to elucidate the underlying mechanisms. Methods COPB2 and YAP1 expression in HCC tissues were first analyzed by database searches and immunohistochemistry. Nomogram and artificial neural network models were established based on COPB2 and YAP1 expression. Cell proliferation was detected by cell counting kit-8 and clone formation assay, while cell migration and invasion were assessed using Transwell assays. Finally, the potential mechanisms underlying COPB2 regulation of YAP1 nuclear translocation were explored by immunofluorescence assay and Western blot. Results COPB2 combined with YAP1 expression was associated with overall postoperative survival in HCC patients and was an independent prognostic factor. High expression of both COPB2 and YAP1 in patients may reduce the efficacy of postoperative transarterial chemoembolization therapy. In vitro experiments revealed that COPB2 affected the sensitivity of HCC cells to Cisplatin (DDP) by regulating YAP1 nuclear translocation. Conclusions Our findings suggest that COPB2/YAP1 affects the drug sensitivity of HCC cells to DDP and that targeting COPB2/YAP1 may be a promising strategy for the precision treatment of HCC.
Collapse
Affiliation(s)
- BIAO WU
- Department of General Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai, 200433, China
| | - XIANLIN GUO
- Department of General Surgery, Zhengzhou First People’s Hospital, Zhengzhou, 450000, China
| | - ZHISHI WU
- Department of General Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai, 200433, China
| | - LIANG CHEN
- Department of General Surgery, Changhai Hospital, Second (Navy) Military Medical University, Shanghai, 200433, China
| | - SUQING ZHANG
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, 226361, China
| |
Collapse
|
4
|
Lou S, Lv H, Zhang L. Identification of Vesicle-Mediated Transport-Related Genes for Predicting Prognosis, Immunotherapy Response, and Drug Screening in Cervical Cancer. Immun Inflamm Dis 2024; 12:e70052. [PMID: 39513664 PMCID: PMC11544644 DOI: 10.1002/iid3.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies among women. Vesicle-mediated transport mechanisms significantly influence tumor cell behavior through intercellular material exchange. However, prognostic significance in CC patients remains underexplored. RESEARCH DESIGN AND METHODS We identified differentially expressed vesicle-mediated transport-related genes from TCGA and GeneCards datasets through differential expression analysis. We constructed a prognostic model using Cox regression and LASSO regression, categorized patients into high- and low-risk groups, and validated the model in the GEO data set. A nomogram integrating clinical features and risk scores demonstrated the model's independent prognostic capability. We analyzed tumor immune cell infiltration, immune checkpoints, and predicted immunotherapy responses in the high- and low-risk groups. Finally, we screened potential drugs for targeting CC and conducted drug-sensitivity analysis. RESULTS We successfully established a 10-gene prognostic model based on VMTRGs. The low-risk group exhibited favorable prognosis, significant immune cell infiltration, and promising immunotherapy response, whereas the high-risk group showed higher sensitivity to chemotherapeutic agents such as Docetaxel and Paclitaxel. Potential drugs identified for targeting CC patients included Megestrol acetate, Lenvatinib, Adavosertib, and Barasertib. CONCLUSIONS The VMTRG-based prognostic model demonstrates reliable clinical prognostic value and enhances understanding of vesicle-mediated transport mechanisms in CC.
Collapse
Affiliation(s)
- Shuai Lou
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
- Department of GynecologyJinhua Maternal and Child Health HospitalJinhuaZhejiangChina
| | - Hongqing Lv
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Lin Zhang
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| |
Collapse
|
5
|
Sun Z, Nie Z, Xu Y, Cui Y, Ma W, Zhang T. SLC12A8 upregulation promotes colorectal cancer progression and chemoresistance. Transl Cancer Res 2024; 13:3446-3464. [PMID: 39145047 PMCID: PMC11319960 DOI: 10.21037/tcr-24-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
Background Colorectal cancer (CRC), a prevalent gastrointestinal malignant disease, causes substantial morbidity and mortality. Identification of novel prognostic biomarkers and therapeutic targets is critically needed to improve patient outcomes. Although solute carrier family 12 member 8 (SLC12A8) has high expression in various tumors and affects tumor progression, its role in CRC remains unclear. The aim of this study was to investigate the functions of SLC12A8 in CRC. Methods SLC12A8 expression and its association with clinical significance in CRC patients were explored via multiple public databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), The Human Protein Atlas (HPA), The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), and Kaplan-Meier plotter. The effects of SLC12A8 on the CRC cell apoptosis, epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS) production, and sensitivity to oxaliplatin were verified by in vitro experiments. Results SLC12A8 expression was upregulated in CRC tissues compared with normal colorectal tissues. Furthermore, high expression of SLC12A8 was associated with poorer prognosis in CRC patients. Pathway enrichment analyses revealed SLC12A8 involvement in oxidative stress and transforming growth factor-beta (TGF-β) signaling. Experiments in CRC cells showed that SLC12A8 upregulation promoted apoptosis resistance, EMT, and inhibited ROS production. Moreover, SLC12A8 knockdown enhanced the sensitivity of CRC cells to oxaliplatin chemotherapy. Conclusions Our integrative analyses identify SLC12A8 as a candidate biomarker for CRC progression. Targeting SLC12A8 may improve patient responses to oxaliplatin-based treatment regimens.
Collapse
Affiliation(s)
- Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiyan Nie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | | | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Qilu Institute of Technology, Jinan, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Xia Y, Pei T, Zhao J, Wang Z, Shen Y, Yang Y, Liang J. Long noncoding RNA H19: functions and mechanisms in regulating programmed cell death in cancer. Cell Death Discov 2024; 10:76. [PMID: 38355574 PMCID: PMC10866971 DOI: 10.1038/s41420-024-01832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/β-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.
Collapse
Affiliation(s)
- Yuyang Xia
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Junjie Zhao
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yu Shen
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Yang Yang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, West China School of Medicine, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
8
|
Dey D, Qing E, He Y, Chen Y, Jennings B, Cohn W, Singh S, Gakhar L, Schnicker NJ, Pierce BG, Whitelegge JP, Doray B, Orban J, Gallagher T, Hasan SS. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023; 14:8358. [PMID: 38102143 PMCID: PMC10724246 DOI: 10.1038/s41467-023-44076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yanan He
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Yihong Chen
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
| | - Benjamin Jennings
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Suruchi Singh
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lokesh Gakhar
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- PAQ Therapeutics, Burlington, MA, 01803, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Balraj Doray
- Department of Internal Medicine, Hematology Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Orban
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
9
|
Dey D, Hasan SS. Strategies for rapid production of crystallization quality coatomer WD40 domains. Protein Expr Purif 2023; 212:106358. [PMID: 37625737 PMCID: PMC10529451 DOI: 10.1016/j.pep.2023.106358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
The vesicular secretion of soluble cargo proteins from the endoplasmic reticulum (ER) is accompanied by the export of ER-resident membrane proteins that are co-packaged in secretory vesicles. The cytosolic coatomer protein complex I (COPI) utilizes the N-terminal WD40 domains of α-COPI and β'-COPI subunits to bind these membrane protein "clients" for ER retrieval. These "αWD40" and "β'WD40" domains are structural homologs that demonstrate distinct selectivity for client proteins. However, elucidation of the atomic-level principles of coatomer-client interactions has been challenging due to the tendency of αWD40 domain to undergo aggregation during expression and purification. Here we describe a rapid recombinant production strategy from E. coli, which substantially enhances the quality of the purified αWD40 domain. The αWD40 purification and crystallization are completed within one day, which minimizes aggregation losses and yields a 1.9 Å resolution crystal structure. We demonstrate the versatility of this strategy by applying it to purify the β'WD40 domain, which yields crystal structures in the 1.2-1.3 Å resolution range. As an alternate recombinant production system, we develop a cost-effective strategy for αWD40 production in human Expi293 cells. Finally, we suggest a roadmap to simplify these protocols further, which is of significance for the production of WD40 mutants prone to rapid aggregation. The WD40 production strategies presented here are likely to have broad applications because the WD40 domain represents one of the largest families of biomolecular interaction modules in the eukaryotic proteome and is critical for trafficking of host as well as viral proteins such as the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Rockville, MD, 20850, USA.
| |
Collapse
|
10
|
The Impact of YRNAs on HNSCC and HPV Infection. Biomedicines 2023; 11:biomedicines11030681. [PMID: 36979661 PMCID: PMC10045647 DOI: 10.3390/biomedicines11030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
HPV infection is one of the most important risk factors for head and neck squamous cell carcinoma among younger patients. YRNAs are short non-coding RNAs involved in DNA replication. YRNAs have been found to be dysregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the role of YRNAs in HPV-positive HNSCC using publicly available gene expression datasets from HNSCC tissue, where expression patterns of YRNAs in HPV(+) and HPV(−) HNSCC samples significantly differed. Additionally, HNSCC cell lines were treated with YRNA1-overexpressing plasmid and RNA derived from these cell lines was used to perform a NGS analysis. Additionally, a deconvolution analysis was performed to determine YRNA1’s impact on immune cells. YRNA expression levels varied according to cancer pathological and clinical stages, and correlated with more aggressive subtypes. YRNAs were mostly associated with more advanced cancer stages in the HPV(+) group, and YRNA3 and YRNA1 expression levels were found to be correlated with more advanced clinical stages despite HPV infection status, showing that they may function as potential biomarkers of more advanced stages of the disease. YRNA5 was associated with less-advanced cancer stages in the HPV(−) group. Overall survival and progression-free survival analyses showed opposite results between the HPV groups. The expression of YRNAs, especially YRNA1, correlated with a vast number of proteins and cellular processes associated with viral infections and immunologic responses to viruses. HNSCC-derived cell lines overexpressing YRNA1 were then used to determine the correlation of YRNA1 and the expression of genes associated with HPV infections. Taken together, our results highlight the potential of YRNAs as possible HNSCC biomarkers and new molecular targets.
Collapse
|
11
|
Gasparian A, Aksenova M, Oliver D, Levina E, Doran R, Lucius M, Piroli G, Oleinik N, Ogretmen B, Mythreye K, Frizzell N, Broude E, Wyatt MD, Shtutman M. Depletion of COPI in cancer cells: the role of reactive oxygen species in the induction of lipid accumulation, noncanonical lipophagy and apoptosis. Mol Biol Cell 2022; 33:ar135. [PMID: 36222847 PMCID: PMC9727790 DOI: 10.1091/mbc.e21-08-0420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The coatomer protein complex 1 (COPI) is a multisubunit complex that coats intracellular vesicles and is involved in intracellular protein trafficking. Recently we and others found that depletion of COPI complex subunits zeta (COPZ1) and delta (ARCN1) preferentially kills tumor cells relative to normal cells. Here we delineate the specific cellular effects and sequence of events of COPI complex depletion in tumor cells. We find that this depletion leads to the inhibition of mitochondrial oxidative phosphorylation and the elevation of reactive oxygen species (ROS) production, followed by accumulation of lipid droplets (LDs) and autophagy-associated proteins LC3-II and SQSTM1/p62 and, finally, apoptosis of the tumor cells. Inactivation of ROS in COPI-depleted cells with the mitochondrial-specific quencher, mitoquinone mesylate, attenuated apoptosis and markedly decreased both the size and the number of LDs. COPI depletion caused ROS-dependent accumulation of LC3-II and SQSTM1 which colocalizes with LDs. Lack of double-membrane autophagosomes and insensitivity to Atg5 deletion suggested an accumulation of a microlipophagy complex on the surface of LDs induced by depletion of the COPI complex. Our findings suggest a sequence of cellular events triggered by COPI depletion, starting with inhibition of oxidative phosphorylation, followed by ROS activation and accumulation of LDs and apoptosis.
Collapse
Affiliation(s)
- A. Gasparian
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. Aksenova
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - D. Oliver
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - E. Levina
- Department of Biological Sciences College of Art and Science, University of South Carolina, Columbia, SC 29208
| | - R. Doran
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. Lucius
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - G. Piroli
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - N. Oleinik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - B. Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425
| | - K. Mythreye
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL 35233
| | - N. Frizzell
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC 29208
| | - E. Broude
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. D. Wyatt
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - M. Shtutman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208,*Address correspondence to: M. Shtutman ()
| |
Collapse
|
12
|
E2F1 Affects the Therapeutic Response to Neoadjuvant Therapy in Breast Cancer. DISEASE MARKERS 2022; 2022:8168517. [PMID: 36164372 PMCID: PMC9509280 DOI: 10.1155/2022/8168517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
This study is aimed at screening genes for predicting the sensitivity response and favorable outcome of neoadjuvant therapy in breast cancer. We downloaded neoadjuvant therapy genetic data of breast cancer and separated it into the pathological complete response (pCR) group and the non-pCR group. Differential expression analysis was performed to select the differentially expressed genes (DEGs). After that, we investigated the enriched biological processes and pathways of DEGs. Then, core up/down protein-protein interaction (PPI) network was, respectively, constructed to identify the hub genes. A transcription factor-target gene regulation network was built to screen core transcription factors (TFs). We found one upregulated DEG (KLHDC7B) and four downregulated DEGs (TFF1, LOC440335, SLC39A6, and MLPH) overlapped in three datasets. All DEGs were mainly enriched in pathways related to DNA biosynthesis, cell cycle, immune response, metabolism, and angiogenesis. The hub genes were KRT18, IL7R, HIST1H1A, and E2F1. The core TFs were HOXA9, SPDEF, FOXA1, E2F1, and PGR. RT-qPCR suggested that E2F1 was overexpressed in MCF-7, but HOXA9 was low-expressed. Western blot suggested that the MAPK signal pathway was inhibited in MCF-7/ADR. That is to say, some genes and core TFs can predict the sensitivity response of neoadjuvant therapy in breast cancer. And E2F1 may be involved in the process of drug resistance by regulating the MAPK signaling pathway. These might be useful as sensitive genes for the efficacy evaluation of neoadjuvant chemotherapy in breast cancer.
Collapse
|
13
|
Construction and Validation of an Oxaliplatin-Resistant Gene Signature in Colorectal Cancer Patients Who Underwent Chemotherapy. Pharmaceuticals (Basel) 2022; 15:ph15091139. [PMID: 36145360 PMCID: PMC9503614 DOI: 10.3390/ph15091139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant expression of genes contributes to the chemoresistance of colorectal cancer (CRC) treatment. This study aimed to identify genes associated with the chemoresistance of oxaliplatin-based chemotherapy in CRC patients and to construct a signature. Oxaliplatin resistance-related genes were screened by analyzing the gene profiles of cell lines and tissue samples that underwent oxaliplatin-based treatment. Oxaliplatin resistance-related genes were used to establish a signature. The association of the signature had clinical significance, so the prognostic value of the signature was analyzed. Independent cohorts and CRC cell lines were used to validate the value of the gene signature and the oxaliplatin-resistant genes. There were 64 oxaliplatin resistance-related genes identified after overlapping the genes from the dataset of oxaliplatin-treated CRC cells and the dataset of patients treated with oxaliplatin-based chemotherapy. A gene signature based on five oxaliplatin resistance-related genes was established. This gene signature effectively predicted the prognosis of CRC patients who underwent chemotherapy. No significant associations were found between the gene mutations and survival of the patients; however, two genes were associated with microsatellite instability status. Two external independent cohorts and CRC cell line experiments validated the prognostic values of the signature and expression of the genes after oxaliplatin treatment. In conclusion, the oxaliplatin resistance-related gene signature involving five genes was a novel biomarker for the prediction of the chemotherapy response and prognosis of CRC patients who underwent oxaliplatin-based chemotherapy.
Collapse
|
14
|
Zhou G, Zhang S, Jin M, Hu S. Comprehensive analysis reveals COPB2 and RYK associated with tumor stages of larynx squamous cell carcinoma. BMC Cancer 2022; 22:667. [PMID: 35715770 PMCID: PMC9206315 DOI: 10.1186/s12885-022-09766-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is one of the highly aggressive malignancy types of head and neck squamous cell carcinomas; genes involved in the development of LSCC still need exploration. METHODS We downloaded expression profiles of 96 (85 in advanced stage and 11 in early stage) LSCC patients from TCGA-HNSC. Function enrichment and protein-protein interactions of genes in significant modules were conducted. Univariate and multivariate Cox regression analyses were performed to explore potential prognostic biomarkers for LSCC. The expression levels of genes at different stages were compared and visualized via boxplots. Immune infiltration was examined by the CIBERSORTx web-based tool and depicted with ggplot2. Gene set enrichment analysis (GSEA) was utilized to analyze functional enrichment terms and pathways. Immunohistochemical staining (IHC) was used to verify the expression of genes in the LSCC samples. RESULTS We identified 25 modules, including 3 modules significantly related to tumor stages of LSCC via weighted gene co-expression network analysis (WGCNA). UIMC1, NPM1, and DCTN4 in the module 'cyan', TARS in the module 'darkorange', and COPB2 and RYK in the module 'lightyellow' showed statistically significant relation to overall survival. The expression of COPB2, DCTN4, RYK, TARS, and UIMC1 indicated association with the change of fraction of immune cells in LSCC patients; two genes, COPB2 and RYK, indicated different expression in various tumor stages of LSCC. Finally, COPB2 and RYK showed high-expression in tumor tissues of advanced LSCC patients. CONCLUSIONS Our study provided a potential perceptive in analyzing progression of LSCC cells and exploring prognostic genes.
Collapse
Affiliation(s)
- Guojin Zhou
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Shoude Zhang
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Mao Jin
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China
| | - Sunhong Hu
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No.3 Qingchun East Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
15
|
Chen T, Kim KY, Oh Y, Jeung HC, Chung KY, Roh MR, Zhang X. Implication of COPB2 Expression on Cutaneous Squamous Cell Carcinoma Pathogenesis. Cancers (Basel) 2022; 14:cancers14082038. [PMID: 35454945 PMCID: PMC9029015 DOI: 10.3390/cancers14082038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The present study aimed to evaluate the effect of COPB2 expression on cutaneous squamous cell carcinoma (cSCC) pathogenesis. cSCC, a common category of skin cancer, is marked by a reasonably favorable prognosis. However, there has been a steady rise in the annual incidence of cases; in particular, a subset of cases showed aggressive progression. However, the underlying molecular mechanism of cSCC pathogenesis is largely unknown. In the present study, we found that COPB2 may act as a potential oncogene and modulator of the tumor immune microenvironment in cSCC pathogenesis. Therefore, COPB2 can serve as a novel predictive prognostic biomarker and immunotherapeutic target in cSCC patients. Abstract The underlying molecular mechanisms of cutaneous squamous cell carcinoma (cSCC) pathogenesis are largely unknown. In the present study, we aimed to evaluate the effect of coatomer protein complex subunit beta 2 (COPB2) expression on cSCC pathogenesis. Clinicopathological significance of COPB2 in cSCC was investigated by analyzing the Gene Expression Omnibus (GEO) database and through a retrospective cohort study of 95 cSCC patients. The effect of COPB2 expression on the biological behavior of cSCC cells was investigated both in vitro and in vivo. We found that COPB2 expression was significantly higher in cSCC samples than in normal skin samples. In our cohort, a considerable association was found between COPB2 expression and indicators of tumor immune microenvironment (TIME), such as histocompatibility complex class (MHC) I, and MHC II, CD4+/ CD8+ tumor-infiltrating lymphocytes. Additionally, COPB2 expression had an independent impact on worsened recurrence-free survival in our cohort. Furthermore, decreased proliferation, invasion, tumorigenic activities, and increased apoptosis were observed after COPB2 knockdown in cSCC cells. COPB2 may act as a potential oncogene and candidate modulator of the TIME in cSCC. Therefore, it can serve as a novel predictive prognostic biomarker and candidate immunotherapeutic target in cSCC patients.
Collapse
Affiliation(s)
- Taiqin Chen
- Department of Dermatology, Yanbian University Hospital, Yanji 133000, China;
| | - Ki-Yeol Kim
- Department of Dental Education, BK21 PLuS Project, Yonsei University College of Dentistry, Seoul 03722, Korea;
| | - Yeongjoo Oh
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Seoul 16995, Korea;
| | - Hei Cheul Jeung
- Cancer Metastasis Research Center, Division of Medical Oncology, Cancer Center Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Kee Yang Chung
- Department of Dermatology, Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Mi Ryung Roh
- Department of Dermatology, Gangnam Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: (M.R.R.); (X.Z.); Tel.: +82-2-2019-3360 (M.R.R.); +82-2-2228-3034 (X.Z.)
| | - Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji 133000, China
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (M.R.R.); (X.Z.); Tel.: +82-2-2019-3360 (M.R.R.); +82-2-2228-3034 (X.Z.)
| |
Collapse
|
16
|
An Integrative Pan-Cancer Analysis of the Oncogenic Role of COPB2 in Human Tumors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7405322. [PMID: 34676262 PMCID: PMC8526247 DOI: 10.1155/2021/7405322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
Several studies have suggested that coatomer protein complex subunit beta 2 (COPB2) may act as an oncogene in various cancer types. However, no systematic pan-cancer analysis has been performed to date. Therefore, the present study analyzed the potential oncogenic role of COPB2 using TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) datasets. The majority of the cancer types overexpressed the COPB2 protein, and its expression significantly correlated with tumor prognosis. In certain tumors, such as those found in breast and ovarian tissues, phosphorylated S859 exhibited high expression. It was found that mutations of the COPB2 protein in kidney and endometrial cancers exhibited a significant impact on patient prognosis. It is interesting to note that COPB2 expression correlated with the number of cancer-associated fibroblasts in certain tumors, such as cervical and endocervical cancers and colon adenocarcinomas. In addition, COPB2 was involved in the transport of substances and correlated with chemotherapy sensitivity. This is considered the first pan-tumor study, which provided a relatively comprehensive understanding of the mechanism by which COPB2 promotes cancer growth.
Collapse
|
17
|
Zhao X, Li L, Yuan S, Zhang Q, Jiang X, Luo T. SPIB acts as a tumor suppressor by activating the NFkB and JNK signaling pathways through MAP4K1 in colorectal cancer cells. Cell Signal 2021; 88:110148. [PMID: 34530056 DOI: 10.1016/j.cellsig.2021.110148] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023]
Abstract
Spi-B transcription factor (SPIB) is a member of the E-twenty-six (ETS) transcription factor family. Previous studies have shown that the expression of SPIB is downregulated in human colorectal cancer tissues. The purpose of our study was to explore the biological function and related mechanism of SPIB in colorectal cancer cells. Our study found that SPIB could inhibit the proliferation, migration and invasion of CRC cells; inhibit angiogenesis; and induce CRC cells cycle arrest in G2/M phase and promote the apoptosis of CRC cells. We also found that compared with the control group, the 50% inhibitory concentration (IC50) values of oxaliplatin and 5-FU in the SPIB overexpression group were significantly reduced. Western blot results showed that the overexpression of SPIB upregulated cleaved-PARP(c-PARP), nuclear factor kB p65 (NFkB p65), phospho-NFkB p65 (p-NFkB P65), JNK1, and C-Jun protein expression levels compared with the control group. The silence of SPIB downregulated c-PARP, NFκB p65, p-NFκB p65, JNK1, and C-Jun protein expression levels. A dual-luciferase reporter assay showed that SPIB could activate the promoter of MAP4K1 and enhance the expression of MAP4K1. After silencing MAP4K1, the protein expression levels of c-PARP, NFkB P65, p-NFkB P65, JNK1, and C-Jun were downregulated. In summary, we found that SPIB is a tumor suppressor in colorectal cancer cells and that SPIB sensitizes colorectal cancer cells to oxaliplatin and 5-FU, SPIB exerts its anti-colorectal cancer effect by activating the NFkB and JNK signaling pathways through MAP4K1. The above findings may provide a reference for new molecular markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Xunping Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lin Li
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shiyun Yuan
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qia Zhang
- Department of Medical Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 404000, People's Republic of China
| | - Xianyao Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Tao Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
18
|
Lu J, Dong QF, Shen ZH. Effect of COPB2 expression on proliferation, migration, and invasion of gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2021; 29:849-857. [DOI: 10.11569/wcjd.v29.i15.849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coatomer protein complex subunit beta 2 (COPB2) is involved in the regulation of malignant biological behavior of various tumor cells. However, its expression and clinical significance in gastric cancer are still unclear.
AIM To investigate the effects of COPB2 on the proliferation, invasion, and migration of gastric cancer cells and the possible mechanism.
METHODS Immunohistochemical method was used to observe the expression of COPB2 in gastric cancer and adjacent tissues. Western blot was used to detect the expression of COPB2 protein in gastric cancer tissues and gastric cancer cell lines (SGC-7901, MKN45, and AGS). After transfection of COPB2-shRNA and its corresponding negative control (Con-shRNA), and pcDNA-COPB2 and its corresponding negative control (pcDNA-Con) into SGC-7901 cells, the effects of knockdown or overexpression of COPB2 on the proliferation, colony formation, migration, and invasion ability of gastric cancer cells were analyzed by CCK-8 assay, cell colony formation assay, and Transwell assay, and the effect of knockdown or overexpression of COPB2 on AKT signaling in gastric cancer cells was detected by Western blot. A tumor xenograft model was established to detect the effect of knockdown of COPB2 on tumor growth.
RESULTS Compared with adjacent tissues and normal gastric epithelial cells (GES-1), the expression of COPB2 protein was significantly increased in gastric cancer tissues and gastric cancer cell lines (SGC-7901, MKN45, and AGS). Knockdown of COPB2 inhibited the proliferation, colony formation, migration, and invasion of SGC-7901 and the expression of p-Akt protein, while overexpression of COPB2 showed the opposite effect. In addition, knockdown of COPB2 inhibited SGC-7901 cell growth in vivo in a tumor xenograft model.
CONCLUSION Knockdown of COPB2 expression can inhibit the proliferation, invasion, and metastasis of gastric cancer cells, and this effect may be related to the inhibition of AKT signaling activity.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pharmacy, Jiangnan Hospital Affiliated to Zhejiang Chinese Medicine University Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311200, Zhejiang Province, China
| | - Qi-Feng Dong
- Department of General Surgery, Jiangnan Hospital Affiliated to Zhejiang Chinese Medicine University Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311200, Zhejiang Province, China
| | - Zhuang-Hong Shen
- Department of Medical Oncology, Jiangnan Hospital Affiliated to Zhejiang Chinese Medicine University Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311200, Zhejiang Province, China
| |
Collapse
|
19
|
Feng Y, Lei X, Zhang L, Wan H, Pan H, Wu J, Zou M, Zhu L, Mi Y. COPB2: a transport protein with multifaceted roles in cancer development and progression. Clin Transl Oncol 2021; 23:2195-2205. [PMID: 34101128 PMCID: PMC8455385 DOI: 10.1007/s12094-021-02630-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
The Coatomer protein complex subunit beta 2 (COPB2) is involved in the formation of the COPI coatomer protein complex and is responsible for the transport of vesicles between the Golgi apparatus and the endoplasmic reticulum. It plays an important role in maintaining the integrity of these cellular organelles, as well as in maintaining cell homeostasis. More importantly, COPB2 plays key roles in embryonic development and tumor progression. COPB2 is regarded as a vital oncogene in several cancer types and has been implicated in tumor cell proliferation, survival, invasion, and metastasis. Here, we summarize the current knowledge on the roles of COPB2 in cancer development and progression in the context of the hallmarks of cancer.
Collapse
Affiliation(s)
- Y Feng
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - X Lei
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - L Zhang
- Department of Urology, Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu Province, China
| | - H Wan
- Wuxi Medical College, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - H Pan
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - J Wu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - M Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, 214122, Jiangsu Province, China
| | - L Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Y Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
20
|
Chen L, Li Q, Jiang Z, Li C, Hu H, Wang T, Gao Y, Wang D. Chrysin Induced Cell Apoptosis Through H19/let-7a/ COPB2 Axis in Gastric Cancer Cells and Inhibited Tumor Growth. Front Oncol 2021; 11:651644. [PMID: 34150620 PMCID: PMC8209501 DOI: 10.3389/fonc.2021.651644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Chrysin is a natural flavone that is present in honey and has exhibited anti-tumor properties. It has been widely studied as a therapeutic agent for the treatment of various types of cancers. The objectives of this present study were to elucidate how chrysin regulates non-coding RNA expression to exert anti-tumor effects in gastric cancer cells. Methods Through the use of RNA sequencing, we investigated the differential expression of mRNAs in gastric cancer cells treated with chrysin. Furthermore, COPB2, H19 and let-7a overexpression and knockdown were conducted. Other features, including cell growth, apoptosis, migration and invasion, were also analyzed. Knockout of the COPB2 gene was generated using the CRISPR/Cas9 system for tumor growth analysis in vivo. Results Our results identified COPB2 as a differentially expressed mRNA that is down-regulated following treatment with chrysin. Moreover, the results showed that chrysin can induce cellular apoptosis and inhibit cell migration and invasion. To further determine the underlying mechanism of COPB2 expression, we investigated the expression of the long non-coding RNA (lncRNA) H19 and microRNA let-7a. Our results showed that treatment with chrysin significantly increased let-7a expression and reduced the expression of H19 and COPB2. In addition, our results demonstrated that reduced expression of COPB2 markedly promotes cell apoptosis. Finally, in vivo data suggested that COPB2 expression is related to tumor growth. Conclusions This study suggests that chrysin exhibited anti-tumor effects through a H19/let-7a/COPB2 axis.
Collapse
Affiliation(s)
- Lin Chen
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Chengshun Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Haobo Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yan Gao
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
21
|
Siskos N, Stylianopoulou E, Skavdis G, Grigoriou ME. Molecular Genetics of Microcephaly Primary Hereditary: An Overview. Brain Sci 2021; 11:brainsci11050581. [PMID: 33946187 PMCID: PMC8145766 DOI: 10.3390/brainsci11050581] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate.
Collapse
|