1
|
Hogarth KA, Shkumat NA, Goman S, Amirabadi A, Bickford S, Muthusami P, Connolly BL, Maynes JT. Biomarkers of mitochondrial stress and DNA damage during pediatric catheter-directed neuroangiography - a prospective single-center study. Pediatr Radiol 2024; 54:1906-1918. [PMID: 39285018 DOI: 10.1007/s00247-024-06048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Neuroangiography represents a critical diagnostic and therapeutic imaging modality whose associated radiation may be of concern in children. The availability of in vivo radiation damage markers would represent a key advancement for understanding radiation effects and aid in the development of radioprotective strategies. OBJECTIVE Determine if biomarkers of cellular damage can be detected in the peripheral blood mononuclear cells (PBMC) of children undergoing neuroangiography. MATERIALS AND METHODS Prospective single-site study of 27 children. Blood collected pre and post neuroangiography, from which PBMC were isolated and assayed for biomarkers of mitochondrial stress (mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and mitochondrial DNA (mtDNA)) and DNA damage (γH2AX). Dose response of biomarkers vs. radiation dose was analyzed using linear regressions. The cohort was divided into higher (HD) and lower dose (LD) groups and analyzed using linear mixed models and compared using Welch's t-tests. RESULTS No biomarker exhibited a dose-dependent response following radiation (γH2AX: R2 = 0.0012, P = 0.86; MMP: R2 = 0.016, P = 0.53; mtDNA: R2 = 0.10, P = 0.11; ROS: R2 = 0.0023, P = 0.81). Groupwise comparisons showed no significant differences in γH2AX or ROS after radiation (γH2AX: LD: 0.6 ± 6.0, P = 0.92; HD: -7.5 ± 6.3 AU, P = 0.24; ROS: LD: 1.3 ± 2.8, P = 0.64; HD: -3.6 ± 3.0 AU, P = 0.24). Significant changes were observed to mitochondrial markers MMP (-53.7 ± 14.7 AU, P = 0.0014) and mtDNA (-1.1 ± 0.4 AU, P = 0.0092) for HD, but not the LD group (MMP: 26.1 ± 14.7 AU, P = 0.090; mtDNA: 0.2 ± 0.4, P = 0.65). CONCLUSIONS Biomarkers of mitochondrial stress in PBMC were identified during pediatric neuroangiography and warrant further investigation for radiation biodosimetry. However, isolating radiation-specific effects from those of procedural stress and general anesthesia requires further investigation.
Collapse
Affiliation(s)
- Kaley A Hogarth
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada.
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| | - Nicholas A Shkumat
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Simal Goman
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Afsaneh Amirabadi
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Suzanne Bickford
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
- Paediatric Neurovascular Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Prakash Muthusami
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Paediatric Neurovascular Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bairbre L Connolly
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Medical Imaging, Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
| | - Jason T Maynes
- Program in Molecular Medicine, SickKids Research Institute, Toronto, ON, Canada.
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Li S, zhang W, zhang H, Fan Y, Jia M, Qi Z, Shen L, He S, Wang Z, Wang Q, Li Y. Serum sSelectin-L is an early specific indicator of radiation injury. Heliyon 2024; 10:e30527. [PMID: 38778981 PMCID: PMC11109730 DOI: 10.1016/j.heliyon.2024.e30527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Objective It's crucial to identify an easily detectable biomarker that is specific to radiation injury in order to effectively classify injured individuals in the early stage in large-scale nuclear accidents. Methods C57BL/6J mice were subjected to whole-body and partial-body γ irradiation, as well as whole-body X-ray irradiation to explore the response of serum sSelectin-L to radiation injury. Then, it was compared with its response to lipopolysaccharide-induced acute infection and doxorubicin-induced DNA damage to study the specificity of sSelectin-L response to radiation. Furthermore, it was further evaluated in serum samples from nasopharyngeal carcinoma patients before and after radiotherapy. Simulated rescue experiments using Amifostine or bone marrow transplantation were conducted in mice with acute radiation syndrome to determine the potential for establishing sSelectin-L as a prognostic marker. The levels of sSelectin-L were dynamically measured using the ELISA method. Results Selectin-L is mainly expressed in hematopoietic tissues and lymphatic tissues. Mouse sSelectin-L showed a dose-dependent decrease from 1 day after irradiation and exhibited a positive correlation with lymphocyte counts. Furthermore, the level of sSelectin-L reflected the degree of radiation injury in partial-body irradiation mice and in nasopharyngeal carcinoma patients. sSelectin-L was closely related to the total dose of γ or X ray. There was no significant change in the sSelectin-L levels in mice intraperitoneal injected with lipopolysaccharide or doxorubicin. The sSelectin-L was decreased slower and recovered faster than lymphocyte count in acute radiation syndrome mice treated with Amifostine or bone marrow transplantation. Conclusions Our study shows that sSelectin-L has the potential to be an early biomarker to classify injured individuals after radiation accidents, and to be a prognostic indicator of successful rescue of radiation victims.
Collapse
Affiliation(s)
- Siyuan Li
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wencheng zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hong zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ying Fan
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Meng Jia
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
3
|
Zhou X, Wang H, Li D, Song N, Yang F, Xu W. MST1/2 inhibitor XMU-MP-1 alleviates the injury induced by ionizing radiation in haematopoietic and intestinal system. J Cell Mol Med 2022; 26:1621-1628. [PMID: 35088536 PMCID: PMC8899195 DOI: 10.1111/jcmm.17203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023] Open
Abstract
The Hippo signalling pathway has been considered as potential therapeutic target in self‐renewal and differentiation of stem and progenitor cells. Thus, mammalian Ste20‐like kinase 1/2 (MST1/2) as the core serine‐threonine kinases in the Hippo signalling pathway has been investigated for its role in immunological disease. However, little information of MST1/2 function in bone marrow suppression induced by ionizing radiation was fully investigated. Here, we reported that MST1/2 inhibitor XMU‐MP‐1 could rescue the impaired haematopoietic stem cells (HSCs) and progenitor cells (HPCs) function under oxidative stress condition. Also, XMU‐MP‐1 pretreatment markedly alleviated the small intestinal system injury caused by the total body irradiation 9 Gy and extended the average survival days of the mice exposed to the lethal dose radiation. Therefore, irradiation exposure causes the serious pathological changes of haematopoietic and intestinal system, and XMU‐MP‐1 could prevent the ROS production, the haematopoietic cells impairment and the intestinal injury. These detrimental effects may be associated with regulating NOX/ROS/P38MARK pathway by MST1/2.
Collapse
Affiliation(s)
- Xiaoliang Zhou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Naling Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Sun L, Morikawa K, Sogo Y, Sugiura Y. MHY1485 enhances X-irradiation-induced apoptosis and senescence in tumor cells. JOURNAL OF RADIATION RESEARCH 2021; 62:782-792. [PMID: 34265852 PMCID: PMC8438247 DOI: 10.1093/jrr/rrab057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a sensor of nutrient status and plays an important role in cell growth and metabolism. Although inhibition of mTOR signaling promotes tumor cell death and several mTOR inhibitors have been used clinically, recent reports have shown that co-treatment with MHY1485, an mTOR activator, enhances the anti-cancer effects of anti-PD-1 antibody and 5-fluorouracil. However, it remains unclear whether MHY1485 treatment alters the effects of radiation on tumor cells. In this study, the radiosensitizing effects of MHY1485 were investigated using murine CT26 and LLC cell lines. We examined mTOR signaling, tumor cell growth, colony formation, apoptosis, senescence, oxidative stress, p21 accumulation and endoplasmic reticulum (ER) stress levels in cells treated with MHY1485 and radiation, either alone or together. We found that MHY1485 treatment inhibited growth and colony formation in both cell lines under irradiation and no-irradiation conditions, results that were not fully consistent with MHY1485's known role in activating mTOR signaling. Furthermore, we found that combined treatment with MHY1485 and radiation significantly increased apoptosis and senescence in tumor cells in association with oxidative stress, ER stress and p21 stabilization, compared to radiation treatment alone. Our results suggested that MHY1485 enhances the radiosensitivity of tumor cells by a mechanism that may differ from MHY1485's role in mTOR activation.
Collapse
Affiliation(s)
- Lue Sun
- Corresponding author. Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan. Tel: +81-29-849-1564; Fax: +81-29-861-6149; E-mail:
| | - Kumi Morikawa
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yu Sogo
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Sugiura
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa 761-0895, Japan
| |
Collapse
|
5
|
F1012-2 Induced ROS-Mediated DNA Damage Response through Activation of MAPK Pathway in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6650045. [PMID: 34124254 PMCID: PMC8189789 DOI: 10.1155/2021/6650045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/18/2021] [Indexed: 01/07/2023]
Abstract
We have previously reported that F1012-2, a sesquiterpene lactone isolated from the Chinese herbal medicine Eupatorium lindleyanum DC., exhibits strong effects against Triple Negative Breast Cancer (TNBC). In this study, we found F1012-2 effectively inhibited cell migration and invasion detected by wound healing and transwell assays. In order to elucidate the potential mechanisms of F1012-2, we further studied its effect on DNA damage in TNBC cell lines. Using single cell gel electrophoresis (comet assay), immunofluorescence, and western blotting assays, we found that F1012-2 treatment induced significant DNA strand breaks and γ-H2AX activation. Moreover, exposure to F1012-2 led to overproduction of reactive oxygen species (ROS). NAC treatment completely eliminated ROS, which may be due to the interaction between NAC and F1012-2. A further study of the molecular mechanisms demonstrated that the MAPK signaling pathway participated in the anti-TNBC effect of F1012-2. Pretreatment with specific inhibitors targeting JNK (SP600125) and ERK (PD98059) could rescue the decrease in cell viability and inhibit expressions of JNK and ERK phosphorylation, but SB203580 had no effects. Finally, in the acute toxicity experiment, there were no obvious symptoms of poisoning in the F1012-2 treatment group. An in vivo study demonstrated that F1012-2 significantly suppressed the tumor growth and induced DNA damage. In conclusion, the activity of F1012-2-induced DNA damage in TNBC was found in vivo and in vitro, which might trigger the MAPK pathway through ROS accumulation. These results indicate that F1012-2 may be an effective anti-TNBC therapeutic agent.
Collapse
|