1
|
Kumar NM, Cooper TL, Kocher TD, Streelman JT, McGrath PT. Large inversions in Lake Malawi cichlids are associated with habitat preference, lineage, and sex determination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.28.620687. [PMID: 39554119 PMCID: PMC11565711 DOI: 10.1101/2024.10.28.620687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Chromosomal inversions are an important class of genetic variation that link multiple alleles together into a single inherited block that can have important effects on fitness. To study the role of large inversions in the massive evolutionary radiation of Lake Malawi cichlids, we used long-read technologies to identify four single and two tandem inversions that span half of each respective chromosome, and which together encompass over 10% of the genome. Each inversion is fixed in one of the two states within the seven major ecogroups, suggesting they played a role in the separation of the major lake lineages into specific lake habitats. One exception is within the benthic sub-radiation, where both inverted and non-inverted alleles continue to segregate within the group. The evolutionary histories of three of the six inversions suggest they transferred from the pelagic Diplotaxodon group into benthic ancestors at the time the benthic sub-radiation was seeded. The remaining three inversions are found in a subset of benthic species living in deep waters. We show that some of these inversions are used as XY sex-determination systems but are also likely limited to a subset of total lake species. Our work suggests that inversions have been under both sexual and natural selection in Lake Malawi cichlids and that they will be important to understanding how this adaptive radiation evolved.
Collapse
Affiliation(s)
- Nikesh M. Kumar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Taylor L. Cooper
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, MD USA
| | - J. Todd Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Patrick T. McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Reeve J, Butlin RK, Koch EL, Stankowski S, Faria R. Chromosomal inversion polymorphisms are widespread across the species ranges of rough periwinkles (Littorina saxatilis and L. arcana). Mol Ecol 2024; 33:e17160. [PMID: 37843465 PMCID: PMC11628645 DOI: 10.1111/mec.17160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L. saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L. arcana, hinting at an ancient origin.
Collapse
Affiliation(s)
- James Reeve
- Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
| | - Roger K. Butlin
- Tjärnö Marine LaboratoryUniversity of GothenburgStrömstadSweden
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| | - Eva L. Koch
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Sean Stankowski
- Institute of Science and Technology – AustriaKlosterneuburgAustria
| | - Rui Faria
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
- Centro de Investigação em Biodiversidade e Recursos GenéticosInBIOLaboratório AssociadoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in GenomicsBiodiversity and Land PlanningCIBIOVairãoPortugal
| |
Collapse
|
3
|
Sharakhov IV, Sharakhova MV. Chromosomal inversions and their impact on insect evolution. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101280. [PMID: 39374869 PMCID: PMC11611660 DOI: 10.1016/j.cois.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
Insects can adapt quickly and effectively to rapid environmental change and maintain long-term adaptations, but the genetic mechanisms underlying this response are not fully understood. In this review, we summarize studies on the potential impact of chromosomal inversion polymorphisms on insect evolution at different spatial and temporal scales, ranging from long-term evolutionary stability to rapid emergence in response to emerging biotic and abiotic factors. The study of inversions has recently been advanced by comparative, population, and 3D genomics methods. The impact of inversions on insect genome evolution can be profound, including increased gene order rearrangements on sex chromosomes, accumulation of transposable elements, and facilitation of genome divergence. Understanding these processes provides critical insights into the evolutionary mechanisms shaping insect diversity.
Collapse
Affiliation(s)
- Igor V Sharakhov
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Mathematics of Biosystems, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia.
| | - Maria V Sharakhova
- Department of Entomology and Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; The Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; Laboratory of Cell Differentiation Mechanisms, Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Quintela M, García‐Seoane E, Dahle G, Klevjer TA, Melle W, Lille‐Langøy R, Besnier F, Tsagarakis K, Geoffroy M, Rodríguez‐Ezpeleta N, Jacobsen E, Côté D, Knutar S, Unneland L, Strand E, Glover K. Genetics in the Ocean's Twilight Zone: Population Structure of the Glacier Lanternfish Across Its Distribution Range. Evol Appl 2024; 17:e70032. [PMID: 39513049 PMCID: PMC11540841 DOI: 10.1111/eva.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/15/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
The mesopelagic zone represents one of the few habitats that remains relatively untouched from anthropogenic activities. Among the many species inhabiting the north Atlantic mesopelagic zone, glacier lanternfish (Benthosema glaciale) is the most abundant and widely distributed. This species has been regarded as a potential target for a dedicated fishery despite the scarce knowledge of its population genetic structure. Here, we investigated its genetic structure across the North Atlantic and into the Mediterranean Sea using 121 SNPs, which revealed strong differentiation among three main groups: the Mediterranean Sea, oceanic samples, and Norwegian fjords. The Mediterranean samples displayed less than half the genetic variation of the remaining ones. Very weak or nearly absent genetic structure was detected among geographically distinct oceanic samples across the North Atlantic, which contrasts with the low motility of the species. In contrast, a longitudinal gradient of differentiation was observed in the Mediterranean Sea, where genetic connectivity is known to be strongly shaped by oceanographic processes such as current patterns and oceanographic discontinuities. In addition, 12 of the SNPs, in linkage disequilibrium, drove a three clusters' pattern detectable through Principal Component Analysis biplot matching the genetic signatures generally associated with large chromosomal rearrangements, such as inversions. The arrangement of this putative inversion showed frequency differences between open-ocean and more confined water bodies such as the fjords and the Mediterranean, as it was fixed in the latter for the second most common arrangement of the fjord's samples. However, whether genetic differentiation was driven by local adaptation, secondary contact, or a combination of both factors remains undetermined. The major finding of this study is that B. glaciale in the North Atlantic-Mediterranean is divided into three major genetic units, information that should be combined with demographic properties to outline the management of this species prior to any eventual fishery attempt.
Collapse
Affiliation(s)
- María Quintela
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Eva García‐Seoane
- Plankton GroupInstitute of Marine ResearchBergenNorway
- Sustainable Oceans and CoastsMøreforsking ASÅlesundNorway
| | - Geir Dahle
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Thor A. Klevjer
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Webjørn Melle
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | | | - François Besnier
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Konstantinos Tsagarakis
- Hellenic Centre for Marine ResearchInstitute of Marine Biological Resources and Inland WatersAthensGreece
| | - Maxime Geoffroy
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
- Faculty of Biosciences, Fisheries and EconomicsUiT the Arctic University of NorwayTromsøNorway
| | | | - Eugenie Jacobsen
- Centre for Fisheries Ecosystems ResearchFisheries and Marine Institute of Memorial University of Newfoundland and LabradorSt. John'sNewfoundland and LabradorCanada
| | - David Côté
- Northwest Atlantic Fisheries CentreFisheries and Oceans CanadaSt. John'sCanada
| | - Sofie Knutar
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Laila Unneland
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| | - Espen Strand
- Plankton GroupInstitute of Marine ResearchBergenNorway
| | - Kevin Glover
- Population Genetics GroupInstitute of Marine ResearchBergenNorway
| |
Collapse
|
5
|
Erickson PA, Bangerter A, Gunter A, Polizos NT, Bergland AO. Limited population structure but signals of recent selection in introduced African Fig Fly (Zaprionus indianus) in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614190. [PMID: 39386550 PMCID: PMC11463544 DOI: 10.1101/2024.09.20.614190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Invasive species have devastating consequences for human health, food security, and the environment. Many invasive species adapt to new ecological niches following invasion, but little is known about the early steps of adaptation. Here we examine population genomics of a recently introduced drosophilid in North America, the African Fig Fly, Zaprionus indianus. This species is likely intolerant of subfreezing temperatures and recolonizes temperate environments yearly. We generated a new chromosome-level genome assembly for Z. indianus. Using resequencing of over 200 North American individuals collected over four years in temperate Virginia, plus a single collection from subtropical Florida, we tested for signatures of recolonization, population structure, and adaptation within invasive populations. We show founding populations are sometimes small and contain close genetic relatives, yet temporal population structure and differentiation of populations is mostly absent across recurrent recolonization events. Although we find limited signals of genome-wide spatial or temporal population structure, we identify haplotypes on the X chromosome that are repeatedly differentiated between Virginia and Florida populations. These haplotypes show signatures of natural selection and are not found in African populations. We also find evidence for several large structural polymorphisms segregating within North America populations and show X chromosome evolution in invasive populations is strikingly different from the autosomes. These results show that despite limited population structure, populations may rapidly evolve genetic differences early in an invasion. Further uncovering how these genomic regions influence invasive potential and success in new environments will advance our understanding of how organisms evolve in changing environments.
Collapse
|
6
|
Ulmo‐Diaz G, Engman A, McLarney WO, Lasso Alcalá CA, Hendrickson D, Bezault E, Feunteun E, Prats‐Léon FL, Wiener J, Maxwell R, Mohammed RS, Kwak TJ, Benchetrit J, Bougas B, Babin C, Normandeau E, Djambazian HHV, Chen S, Reiling SJ, Ragoussis J, Bernatchez L. Panmixia in the American eel extends to its tropical range of distribution: Biological implications and policymaking challenges. Evol Appl 2023; 16:1872-1888. [PMID: 38143897 PMCID: PMC10739100 DOI: 10.1111/eva.13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 12/26/2023] Open
Abstract
The American eel (Anguilla rostrata) has long been regarded as a panmictic fish and has been confirmed as such in the northern part of its range. In this paper, we tested for the first time whether panmixia extends to the tropical range of the species. To do so, we first assembled a reference genome (975 Mbp, 19 chromosomes) combining long (PacBio and Nanopore and short (Illumina paired-end) reads technologies to support both this study and future research. To test for population structure, we estimated genotype likelihoods from low-coverage whole-genome sequencing of 460 American eels, collected at 21 sampling sites (in seven geographic regions) ranging from Canada to Trinidad and Tobago. We estimated genetic distance between regions, performed ADMIXTURE-like clustering analysis and multivariate analysis, and found no evidence of population structure, thus confirming that panmixia extends to the tropical range of the species. In addition, two genomic regions with putative inversions were observed, both geographically widespread and present at similar frequencies in all regions. We discuss the implications of lack of genetic population structure for the species. Our results are key for the future genomic research in the American eel and the implementation of conservation measures throughout its geographic range. Additionally, our results can be applied to fisheries management and aquaculture of the species.
Collapse
Affiliation(s)
- Gabriela Ulmo‐Diaz
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Augustin Engman
- University of Tennessee Institute of Agriculture, School of Natural ResourcesKnoxvilleTennesseeUSA
| | | | | | - Dean Hendrickson
- Department of Integrative Biology and Biodiversity CollectionsUniversity of Texas at AustinAustinTexasUSA
| | - Etienne Bezault
- UMR 8067 BOREA, Biologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU, IRD, UCN, UA)Université des AntillesPointe‐à‐PitreGuadeloupe
- Caribaea Initiative, Département de BiologieUniversité Des Antilles‐Campus de FouillolePointe‐à‐PitreGuadeloupeFrance
| | - Eric Feunteun
- UMR 7208 BOREABiologie Organismes Écosystèmes Aquatiques (MNHN, CNRS, SU,IRD, UCN, UA)Station Marine de DinardRennesFrance
- EPHE‐PSLCGEL (Centre de Géoécologie Littorale)DinardFrance
| | | | - Jean Wiener
- Fondation pour la Protection de la Biodiversité Marine (FoProBiM)CaracolHaiti
| | - Robert Maxwell
- Inland Fisheries SectionLouisiana Department of Wildlife and FisheriesLouisianaUSA
| | - Ryan S. Mohammed
- The University of the West Indies (UWI)St. AugustineTrinidad and Tobago
- Present address:
Department of Biological SciencesAuburn UniversityAuburnAlabamaUSA
| | - Thomas J. Kwak
- US Geological SurveyNorth Carolina Cooperative Fish and Wildlife Research UnitDepartment of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | | | - Bérénice Bougas
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Charles Babin
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Eric Normandeau
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| | - Haig H. V. Djambazian
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Shu‐Huang Chen
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Sarah J. Reiling
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Jiannis Ragoussis
- McGIll Genome Centre, Department of Human GeneticsVictor Phillip Dahdaleh Institute of Genomic MedicineMcGill UniversityMontrealQuebecCanada
| | - Louis Bernatchez
- Département de BiologieInstitut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecCanada
| |
Collapse
|
7
|
Nowling RJ, Fallas-Moya F, Sadovnik A, Emrich S, Aleck M, Leskiewicz D, Peters JG. Fast, low-memory detection and localization of large, polymorphic inversions from SNPs. PeerJ 2022; 10:e12831. [PMID: 35116204 PMCID: PMC8784018 DOI: 10.7717/peerj.12831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Large (>1 Mb), polymorphic inversions have substantial impacts on population structure and maintenance of genotypes. These large inversions can be detected from single nucleotide polymorphism (SNP) data using unsupervised learning techniques like PCA. Construction and analysis of a feature matrix from millions of SNPs requires large amount of memory and limits the sizes of data sets that can be analyzed. METHODS We propose using feature hashing construct a feature matrix from a VCF file of SNPs for reducing memory usage. The matrix is constructed in a streaming fashion such that the entire VCF file is never loaded into memory at one time. RESULTS When evaluated on Anopheles mosquito and Drosophila fly data sets, our approach reduced memory usage by 97% with minimal reductions in accuracy for inversion detection and localization tasks. CONCLUSION With these changes, inversions in larger data sets can be analyzed easily and efficiently on common laptop and desktop computers. Our method is publicly available through our open-source inversion analysis software, Asaph.
Collapse
Affiliation(s)
- Ronald J. Nowling
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - Fabian Fallas-Moya
- Electrical Engineering and Computer Science, University of Tennessee-Knoxville, Knoxville, Tennessee, United States
| | - Amir Sadovnik
- Electrical Engineering and Computer Science, University of Tennessee-Knoxville, Knoxville, Tennessee, United States
| | - Scott Emrich
- Electrical Engineering and Computer Science, University of Tennessee-Knoxville, Knoxville, Tennessee, United States
| | - Matthew Aleck
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - Daniel Leskiewicz
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| | - John G. Peters
- Electrical Engineering and Computer Science, Milwaukee School of Engineering, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
8
|
Termignoni-Garcia F, Kirchman JJ, Clark J, Edwards SV. Comparative Population Genomics of Cryptic Speciation and Adaptive Divergence in Bicknell's and Gray-Cheeked Thrushes (Aves: Catharus bicknelli and Catharus minimus). Genome Biol Evol 2022; 14:evab255. [PMID: 34999784 PMCID: PMC8743040 DOI: 10.1093/gbe/evab255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Cryptic speciation may occur when reproductive isolation is recent or the accumulation of morphological differences between sister lineages is slowed by stabilizing selection preventing phenotypic differentiation. In North America, Bicknell's Thrush (Catharus bicknelli) and its sister species, the Gray-cheeked Thrush (Catharus minimus), are parapatrically breeding migratory songbirds, distinguishable in nature only by subtle differences in song and coloration, and were recognized as distinct species only in the 1990s. Previous molecular studies have estimated that the species diverged approximately 120,000-420,000 YBP and found very low levels of introgression despite their similarity and sympatry in the spring (prebreeding) migration. To further clarify the history, genetic divergence, genomic structure, and adaptive processes in C. bicknelli and C. minimus, we sequenced and assembled high-coverage reference genomes of both species and resequenced genomes from population samples of C. bicknelli, C. minimus, and two individuals of the Swainson's Thrush (Catharus ustulatus). The genome of C. bicknelli exhibits markedly higher abundances of transposable elements compared with other Catharus and chicken. Demographic and admixture analyses confirm moderate genome-wide differentiation (Fst ≈ 0.10) and limited gene flow between C. bicknelli and C. minimus, but suggest a more recent divergence than estimates based on mtDNA. We find evidence of rapid evolution of the Z-chromosome and elevated divergence consistent with natural selection on genomic regions near genes involved with neuronal processes in C. bicknelli. These genomes are a useful resource for future investigations of speciation, migration, and adaptation in Catharus thrushes.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Johnathan Clark
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|