1
|
Liu M, Zhang Y. Impact of climate change on dengue fever: a bibliometric analysis. GEOSPATIAL HEALTH 2025; 20. [PMID: 39973764 DOI: 10.4081/gh.2025.1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 12/08/2024] [Indexed: 02/21/2025]
Abstract
Dengue is the most widespread and fastest-growing vectorborne disease worldwide. We employed bibliometric analysis to provide an overview of research on the impact of climate change on dengue fever focusing on both global and Southeast Asian regions. Using the Web of Science Core Collection (WoSCC) database, we reviewed studies on the impact of climate change on dengue fever between 1974 and 2022 taking into account study locations and international collaboration. The VOS viewer software (https://www.vosviewer.com/) and the Bibliometrix R package (https://www.bibliometrix.org/) were used to visualise country networks and keywords. We collected 2,055 relevant articles published globally between 1974 and 2022 on the impact of climate change on dengue fever, 449 of which published in Southeast Asia. Peaking in 2021, the overall number of publications showed a strong increase in the period 2000-2022. The United States had the highest number of publications (n=558) followed by China (261) and Brazil (228). Among the Southeast Asian countries, Thailand had most publications (n=123). Global and Southeast Asian concerns about the impact of climate change on dengue fever are essentially the same. They all emphasise the relationship between temperature and other climatic conditions on the one hand and the transmission of Aedes aegypti on the other. A significant positive correlation exists between the number of national publications and socioeconomic index and between international collaboration and scientific productivity in the field. Our study demonstrates the current state of research on the impact of climate change on dengue and provides a comparative analysis of the Southeast Asian region. Publication output in Southeast Asia lags behind that of major countries worldwide, and various strategies should be implemented to improve international collaboration, such as increasing the number of international collaborative projects and providing academic resources and research platforms for researchers.
Collapse
Affiliation(s)
- Mai Liu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing
| | - Yin Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing
| |
Collapse
|
2
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Neto JFDN, Roque RA, Ferreira FADS, Rabelo MX, Marques JA, Guimaraes JM, Vasconcelos ADS, Tavares CPDS, Barros JC, Da Silva BFO, Tadei WP, Val AL. Morphological changes in eggs and embryos of Aedes aegypti (Diptera: Culicidae) exposed to predicted climatic scenarios for the year 2100 in the Central Amazon. Acta Trop 2024; 258:107328. [PMID: 39032849 DOI: 10.1016/j.actatropica.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
According to the IPCC, by the year 2100, rises in global temperature could reach up to 5 °C above current averages. On a planet-wide scale, this is one of the effects of climate changes that could have repercussions on the biological cycle of Aedes aegypti, the main arbovirus vector in urban environments and a transmitter of the arboviruses that cause dengue, Zika, chikungunya and urban yellow fever. The objective of this study was to evaluate morphological changes in Ae. aegypti eggs and embryos maintained in a climate change simulator. For this, specimens obtained from an insectarium were kept in four chambers that simulated the range of environmental scenarios predicted by the IPCC for the year 2100. The eggs obtained from each room were collected and transported to the laboratory for morphometric and morphological analysis, using confocal and scanning microscopy. Aedes aegypti eggs (n=20) were used to obtain the following variables: total width, total length, length-width ratio and diameter of the micropylar disc. Additionally, 20 embryos were used to obtain the data on head capsule length, width and length-width ratio. The data were subjected to a normality test and the means of each variable were compared using ANOVA and Tukey's post-hoc test, considering (p ≤ 0.05). A significant reduction (p < 0.05) was observed mainly in the mean lengths under the current-extreme scenario (587.5 and 553.6 μm, respectively), as well as in the widths under the current-mild scenario (171 and 158.4 μm, respectively). The length of the cephalic capsule was also affected, showing significant differences in the means under the current-intermediate scenario (189.5 and 208.5 μm, respectively), as well as in the widths between the current-intermediate scenarios (173.7 and 194.9 μm, respectively). The results suggest significant changes in the morphometry of Ae. aegypti eggs and embryos as a result of the climatic influences to which the adults were subjected, which may have an impact on vector population density and, consequently, on arbovirus dynamics in urban environments.
Collapse
Affiliation(s)
- Joaquim Ferreira do Nascimento Neto
- Laboratório de Ecofisiologia e Evolução Molecular - LEEM, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva - GCBEv, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil.
| | - Rosemary Aparecida Roque
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | | | - Marjory Ximenes Rabelo
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil
| | - Jéssica Araújo Marques
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil
| | - Jander Matos Guimaraes
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil
| | - Aldenora Dos Santos Vasconcelos
- Centro Multiusuário para Análise de Fenômenos Biomédicos - CMABio; Universidade do Estado do Amazonas - UEA; Manaus, Amazonas, Brasil; Programa de Pós-graduação em Biotecnologia - PPG Biotec, Universidade do Federal do Amazonas - UFAM, Manaus, Amazonas, Brasil
| | | | - Jessica Cavalcante Barros
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Bruna Felipe Olavo Da Silva
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Wanderli Pedro Tadei
- Laboratório de Malária e Dengue - LMD, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Adalberto Luis Val
- Laboratório de Ecofisiologia e Evolução Molecular - LEEM, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| |
Collapse
|
4
|
Lee ZA, Baranowski AK, Cohen CB, Pelletier TS, Preisser EL. Domestication reduces caterpillar response to auditory predator cues. ENVIRONMENTAL ENTOMOLOGY 2024; 53:587-593. [PMID: 38748568 DOI: 10.1093/ee/nvae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/22/2023] [Accepted: 04/29/2024] [Indexed: 08/18/2024]
Abstract
Domestication can lead to significant changes in the growth and behavior of organisms. While the threat of predation is a strong selective force in the wild, the relaxation or removal of this threat in captive-rearing environments selects for reduced sensitivity to biotic stressors. Previous work has documented such changes in other taxa, but no work has been done on domestication-related losses of predation risk sensitivity in insects. We exposed both wild and domesticated (>50 generations in captivity) Lymantria dispar dispar (Lepidoptera: Erebidae) larvae to recordings of predators (wasp buzzing), nonpredators (mosquito buzzing), or no sound to compare the effects of predation risk on the two stocks. Wasp buzzing, but not mosquito buzzing, decreased survival of wild caterpillars relative to the control; domesticated caterpillars showed no such response. Domesticated L. dispar larvae appear to have reduced sensitivity to predation risk cues, suggesting that captive-reared insects may not always be analogs to their wild counterparts for risk-related behavioral studies.
Collapse
Affiliation(s)
- Zachary A Lee
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI 02881, USA
| | - Alex K Baranowski
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI 02881, USA
| | - Caroline B Cohen
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI 02881, USA
| | - Tyler S Pelletier
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI 02881, USA
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Evan L Preisser
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
5
|
Müller JN, Galardo AKR, Corrêa APSDA, Macoris MDLDG, de Melo-Santos MAV, Nakazawa MM, Martins AJ, Lima JBP. Impact of SumiLarv ® 2MR on Aedes aegypti larvae: a multicenter study in Brazil. Parasit Vectors 2024; 17:88. [PMID: 38409019 PMCID: PMC10895835 DOI: 10.1186/s13071-023-06064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Aedes aegypti is associated with dengue, Zika, and chikungunya transmission. These arboviruses are responsible for national outbreaks with severe public health implications. Vector control is one of the tools used to prevent mosquito proliferation, and SumiLarv® 2MR is an alternative commercial product based on pyriproxyfen for larval/pupal control. In this study, the residual effectiveness of SumiLarv® 2MR in different regions of Brazil was evaluated in simulated field conditions. METHODS We conducted a multicenter study across four Brazilian states-Amapá, Pernambuco, Rio de Janeiro, and São Paulo-given the importance to the country's climatic variances in the north, northeast, and southeast regions and their influence on product efficiency. The populations of Ae. aegypti from each location were held in an insectary. Third-instar larvae (L3) were added every 2 weeks to water containers with SumiLarv® 2MR discs in 250-, 500- and 1000-l containers in Amapá and Rio de Janeiro, and 100-l containers in Pernambuco and São Paulo, using concentrations of 0.04, 0.08, and 0.16 mg/l. RESULTS Adult emergence inhibition over 420 days was observed in all tests conducted at a concentration of 0.16 mg/l; inhibition for 308-420 days was observed for 0.08 mg/l, and 224-420 days for 0.04 mg/l. CONCLUSIONS Sumilarv® 2MR residual activity demonstrated in this study suggests that this new pyriproxyfen formulation is a promising alternative for Aedes control, regardless of climatic variations and ideal concentration, since the SumiLarv® 2MR showed adult emergence inhibition of over 80% and residual activity greater than 6 months, a period longer than that recommended by the Ministry of Health of Brazil between product re-application in larval breeding sites.
Collapse
Affiliation(s)
- Josiane Nogueira Müller
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil.
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil.
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Allan Kardec Ribeiro Galardo
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil
| | - Ana Paula Sales de Andrade Corrêa
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
- Laboratory of Medical Entomology, Institute of Scientific and Technological Research of the State of Amapá-IEPA, Macapá, Brazil
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | - Ademir Jesus Martins
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - José Bento Pereira Lima
- Laboratory of Biology, Control and Surveillance of Vector Insects-LBCVIV FIOCRUZ/RJ, Rio de Janeiro, Brazil
- Programa de Pós-graduação em Medicina Tropical, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Piovezan-Borges AC, Valente-Neto F, Urbieta GL, Laurence SGW, de Oliveira Roque F. Global trends in research on the effects of climate change on Aedes aegypti: international collaboration has increased, but some critical countries lag behind. Parasit Vectors 2022; 15:346. [PMID: 36175962 PMCID: PMC9520940 DOI: 10.1186/s13071-022-05473-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito-borne diseases (e.g., transmitted by Aedes aegypti) affect almost 700 million people each year and result in the deaths of more than 1 million people annually. Methods We examined research undertaken during the period 1951–2020 on the effects of temperature and climate change on Ae. aegypti, and also considered research location and between-country collaborations. Results The frequency of publications on the effects of climate change on Ae. aegypti increased over the period examined, and this topic received more attention than the effects of temperature alone on this species. The USA, UK, Australia, Brazil, and Argentina were the dominant research hubs, while other countries fell behind with respect to number of scientific publications and/or collaborations. The occurrence of Ae. aegypti and number of related dengue cases in the latter are very high, and climate change scenarios predict changes in the range expansion and/or occurrence of this species in these countries. Conclusions We conclude that some of the countries at risk of expanding Ae. aegypti populations have poor research networks that need to be strengthened. A number of mechanisms can be considered for the improvement of international collaboration, representativity and diversity, such as research networks, internationalization programs, and programs that enhance representativity. These types of collaboration are considered important to expand the relevant knowledge of these countries and for the development of management strategies in response to climate change scenarios. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05473-7.
Collapse
Affiliation(s)
- Ana Cláudia Piovezan-Borges
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Francisco Valente-Neto
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Gustavo Lima Urbieta
- Laboratório de Mamíferos, Departamento de Sistemática e Ecologia, Programa de Pós-Graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba (UFPB), João Pessoa, Paraíba, Brasil.
| | - Susan G W Laurence
- Centre for Tropical Environmental and Sustainability Science (TESS), College of Science and Engineering, James Cook University, Cairns, Australia
| | - Fabio de Oliveira Roque
- Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.,Centre for Tropical Environmental and Sustainability Science (TESS), College of Science and Engineering, James Cook University, Cairns, Australia
| |
Collapse
|